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ABSTRACT OF THE DISSERTATION

Structural Changes in Cointegrated Processes

by

-

Peter Reinhard Hansen

Doctor of Philosophy in Economics

University of California at San Diego, 2000

Professor James D. Hamilton. Chair

In my dissertation, I show how structural changes in cointegrated processes can be for-
mulated in the vector autoregressive model, how parameters can be estimated. and how one can
test for structural changes in the cases where the change points are known or unknown. My disser-
tation also contains new results about the Granger representation for /(1) processes and a general
estimation technique.

Chapter one contains a new proof of the Johansen-Granger representation theorem and
derives an explicit expression of the Granger representation. This representation is useful for
impulse response analysis and for the asymptotic analysis of cointegrated processes with structural
changes.

Chapter two develops the case where potential change points and the number of cointe-
grating relations are known. The number of cointegrating relations may vary over the sample. |
show how a large class of structural changes can be formulated in a unified framework. and that
parameters can be estimated with a new estimation technique. This technique is called the gener-

alized reduced rank regression (GRRR) technique. and is described in more detail in Chapter five.

ix
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Tests for structural changes. and hypotheses that can be expressed by linear parameter restrictions.
are shown to have an asymptotic \? distribution. The chapter includes an empirical application to
the US term structure of interest rates.

Chapter three considers the case where a change point is unknown. Various tests for
parameter constancy are studied. These tests are constructed from a set of likelihood ratio (LR)
statistics that test for a structural change in the cointegrating relations over a pre-specified interval.
Some tables with critical values are provided along with a study of the power of the different tests.

Chapter four derives a test to determine the number of cointegrating relations in processes
with one or multiple structural changes. When the potential change points are known. the asvmp-
totic distribution of the LR test turns out to be a convex combination of squared Dickey-Fuller
distributions.

Chapter five presents the most general version of the GRRR technique. Several applica-

tions of the estimation technique are presented.
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Chapter 1

The Johansen-Granger Representation Theorem:

An Explicit Expression for I(1) Processes'

Abstract

The Johansen-Granger representation theorem for the cointegrated vector autore-
gressive process is derived using the companion form. This approach yields an explicit
representation of all coefficients and initial values.

This result is useful for impulse response analysis, common feature analysis and

asymptotic analysis of cointegrated processes.

I thank Graham Elliott, James D. Hamilton, Hans Christian Kongsted, Anders Rahbek, and Halbert White for
valuable comments. All errors remain my responsibility.
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(3]

1.1. Introduction

The Johansen-Granger representation theorem! states that a vector autoregressive process A(L)X,
= z,. integrated of order one. has the representation X, = CZ§=1 gi + C(L)ey + Ao. where
{C(L)z,} is stationary if {s,} is stationary and where A depends on initial values (Xq. X_;....).
(sce Johansen (1991. 1996)). Johansen's result gives explicit values of C whereas the coefficients
of the lag polynomial, C(L). and the initial value, A4q. are given implicitly.

This representation of cointegrated processes is known as the Granger representation and is
synonymous with the Wold representation for stationary processes. Because the representation
divides .Y, into a random walk and a stationary process, it can be viewed as multivariate Beveridge-
Nelson decomposition where the labels are permanent and transitory components. (see Beveridge
and Nelson (1981)).

The Granger representation is valuable in the asymptotic analysis of cointegrated processes,
where typically only an explicit expression for C' is needed. Explicit values for the coefficients
in C(L) are useful in common feature analysis. (see Engle and Kozicki (1993)), and in impulse
response analysis, (see Liittkepohl and Reimers (1992), Warne (1993). and Liitkepohl and Saikkonen
(1997)), where the coefficients of C(L) are interpreted as the transitory effects of the shocks =z,.
Similarly, in asymptotic analysis of the model with structural breaks. it is valuable to have an
explicit value for Ag.

In this paper. explicit values of coefficients as well as initial values are found using the com-
panion form. making use of the algebraic structure that characterizes this model.

From Johansen (1996) we adopt the following definitions: for an m x n matrix a with full
column rank n, we define @ = a(a’a)~! and let the orthogonal complement of a. be the full rank

m x (m — n) matrix a that hasa’ a = 0.

' The original Granger representation theorem, given by Engle and Granger (1987), asserts the existence of an
error correction representation of Xe, under the assumptions that AX, and 3’X, have stationary and invertible
VARMA representations, for some matrix 3. The Johansen-Granger representation theorem, of Johansen (1991,
1996}, makes assumptions on the antoregressive parameters, that precisely characterizes I(1) processes. and states
results on the moving average representation of X,.
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In Section 2 the explicit representation is derived. In Section 3 we consider deterministic
aspects of the representation. Section 4 contains concluding remarks and the appendix contains

relevant algebra.

1.2. The Granger Representation for Autoregressive Processes Integrated

of Order One

We consider the p-dimensional vector autoregressive process of order &
‘Yg = leYg_l +n24Y¢_2 +"'+H[¢.Y¢_k+¢Dg +¢&. t=1..... T.

where the process’ deterministic terms are contained in D, and wherez,, ¢t =1..... T is a sequence
of independent identically distributed stochastic variables with mean zero®.

The process can be re-written in error correction form:

k—~1
AX, =X, + Zr,axl_l +®Dy +5. t=1..... T

=1

where[1 = -7+ Zf;l ;and I'; = - Zj II;. The conditions that ensure that X, is integrated

=i+l

of order one. referred to as X, being I(1), are stated in the following assumption:
Assumption 1.2.1. The assumptions of the Johansen-Granger representation theorem are:

(i) The roots of the characteristic polynomial
det(A(z)) =det(] — ;2 — My2% — - - - [I;2¥)

are either outside the unit circle or equal to one.

*The Granger representation is not relying on the assumptions on s, since it is entirely an algebraic derivation.
However the i.i.d. assumption is important for some of the interpretations of the representation.
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(ii) The matrix I has reduced rank r < p. and can therefore be expressed as the product I1 = a3’

where o and 3 are p x r matrices of full column rank r.

(iii) The matrix o/, T8, has full rank. where [ = [ — """, and where a, and 3, are the

orthogonal complements to a and 3.

The first assumption ensures that the process is not explosive (roots in the unit circle) or
seasonally cointegrated (roots on the boundary of the unit circle different from z = 1). (see
Hylleberg, Engle, Granger, and Yoo (1990) or Johansen and Schaumburg (1998)). The second
ensures that there are at least p — r unit roots and induces cointegration whenever r > 1. The
third assumption restricts the process from being [(2). because (iii) together with (i) ensures
that the number of unit roots is exactly p —r.

Under these assumptions, Johansen (1991) showed that X, has the representation X, =
CSt_ (s +®D;) + C(L) (¢ + D) + A. where C = 3, (o/,T3,)""«’,. By using the com-
panion form of the process. it is possible to obtain explicit values for the coefficients of the lag
polynomial C(L) = Cq+CL +C2L?+- - -. and the initial values contained in A. as I show below.

The following lemma will be useful.

Lemma 1.2.2. Let a and b be m x n matrices. m > n with full column rank n. and let a; and
b, be their orthogonal complements, respectively.

The following five statements are equivalent.
(i) The matrix (I + b'a) does not have 1 as an eigenvalue.
(i) Let v be a vector in R™. Then (¥’a)v =0 implies v = Q.
(iii) The matrix ¥a has full rank.
(iv) The m x m matrix (b.a,) has full rank.

(v) The matrix ¥’ a, has full rank.
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Proof. The equivalence of (i), (ii) and (iii) is straightforward, and the identity

a’b

l(a.a)ll(b.ar)| =|(a.ar) (b.ar)] = | =la’blla’ia.|
a'b a'a,

proves that (i/ii) holds if and only if ({v) holds. Finally, the identity

¥b 0
(8.6 )l[(b.ar)l =|(b.bL) (b.ar)l = [ =66l b a,]
¥.b ay

completes the proof. Il

1.2.1. The Companion Form

We transform the process into the companion form. by defining
X, =(X,. X _y...... Xt—ks1)
s0 that with suitable definitions

AX; = II'X;_| +®; +¢;

« e/ yre . - -
= a"3"X;_,+&; +<.
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which converts the process to a vector autoregressive process of order one. The needed definitions

are
(03'+F1 -y -+ Ceoy —Ti—2 _rk-l\
I e 0
n =
-7 0
\ 0 0 I I }
\ (3 I 0 0
(0 ["1 rk_[
0 -I I
0 I 0
a® = 3% =
I
0 I
\ / \0 - O —1/
(51\ (X)Dt
0 0
g = &: =

\ 0/ o)

It is easily verified that the orthogonal complements of a* and 3 are given by

[ o

—["laJ_

\  YIRT- T J

Lemma 1.2.3. Let a. 3. a* and 3° be defined as above, and assume that Assumption 1.2.1 holds.

Then the eigenvalues of the matrix (I + 3 a") are all less than one in absolute value.
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Proof. By Assumption 1.2.1 (iii), the identity

a]_’@l = a{._([ - F[ —_—r = [‘k—l)B_L

(I - 37 a"). However we need to show that the eigenvalues are smaller than one in absolute value.

Therefore consider an eigenvector v = (v}..... ve) #0of (I+3%a"). e.g. (I+3"a")v = Av. The

upper r + p rows of ({ + 3% a")v yields

Uy + 3’(01’1 + v+ -+ Cierve) = Ay
(avy +Tyva +--- +Thqr) = Avg
which implies A3'v2 = (A—1)v;. and the remaining part implies v = Avy = - -- = A¥*~2y,.. The case

A = 0 clearly fulfills |\| < 1 so assume A # 0. Multiply the second set of equations by (A — 1)//\k

and substitute z = 1/ to obtain
Tl-2z)—adz-Ti(1—2z)z—--- = Fe1(1 —2)2" Yo =0.

This is equivalent to
k—1

I1-z2)-adz-) T(1-2z)2|=0.
=1
and since Assumption 1.2.1 has [z| > 1 we conclude that |A| < 1.0
The result has the implication that under Assumption 1.2.1 the sum ¥ ;2 (1 + 3% a")* is

convergent with limit (3*'a*)~!, such that a process defined by Y; = Y7 (1 + 3%a")'u,, is

stationary whenever u, is stationary-.
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Lemma 1.2.4. With the definitions above we have the identities:

(I —-CrT) (I - CT)33

I = (I-CD)33 +C(T 1)+ Ca.a,.

Proof. Since [ = 3(83)~'3' + 3,(8,3.)"'3, =33 + 3,3, . the first identity follows from

(I-CT) = (I-CT)33+3,3.)

(I-Ch)338 + 3,3, —-3,(a’,T3,) ', 13,3,

(I —CT)33.

and the second follows by applying the first identity and that C =Ca,a’,. B

We are now ready to formulate the main result.

Theorem 1.2.5 (The Johansen-Granger representation theorem). Let a process be given
by the equation
k-1
AX, =TX, 1 + Y TiAX,, + 8D, + .

=1

and assume that Assumption 1.2.1 holds. Then the process has the representation

t
X, = CZ(s, +®D;) +C(L)(z¢ +¥D) + C(Xo—T1 X1 =+ = Tkc1 Xks1)
=1

where C = 3, (a, ra,)"t o', and where the coefficients of C(L) are given by

Ci=GQ'Ey
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where

G = ((I-CT),—-CT,.....,—CT_1)
( ren [, - Ti_z iy

0 ry -+ Tk-2 Teoy

Q = 0 I 0 0

Ty

Eia = (I,.1,.0.---.0.

Proof. Under Assumption 1.2.1 the pk x pk matrix (3%.a7) has full rank. We can therefore
obtain the Granger representation for X by finding the moving average representation for the
processes 3% X; and o ’'X; individually and then stacking them and multiplying by (3°.a3 )"~

First. consider the process
3./1\': —_ ([ -+ 3.,0.)}3./4 ’:_l + Jal(s; + (b;).

Since all the eigenvalues of (I +3"a"). according to Lemma 1.2.3. are smaller than one in absolute

value. the process has the stationary representation
3VX] =C7(L)(=; +®])

where C7 = (I+3”a")'3". and where by stationary we mean that 3% X; - E (3" X;) is stationary.

Next consider the random walk

aYX; = aYX{, +a¥(s +®])

t
= aYXg+ Y ai(el + @)
i=1
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10
A representation for X; is now obtained as

X+ — (3.a0 )] C*(L)(e; +®;)
t — Ml 8
Sioat(e + @) +ay X

The entire matrix (3°.a%)~! is given in the Appendix. for our purposes we only need its upper
p rows that define the equation for X,. These rows are given by

((I - CT)3.-CT3..... —CT3;_,.Cay)
with the definition [} = ', + --- + [x~,. For simplicity. we define

F=(I-CT)3.-CTj..... -CT3_,)

and obtain the representation for X,:

C(LY(s; + &;
X, = (F.Cay) (L) + @0
Yi_iay(er +9]) + ar X

t
= FC(L)(sf +9])+Car Y a¥(s] +®]) + CaralX;
=1

C(L)(e +®D) +CY (i + ®D;) + A

=1

where the initial value is explicitly given by
A= CC_k_u_QlI.X(; = C(.X() - r[."_l —s = rk_l.\’_(k-[)).
and the coefficients of the polynomial C(L) are given by

C: = FU+8"a")'3"E,
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11

= FD'B'E,,.
with the additional definitions
D = (I+3"a")
(aoo-.-o\ (1,,\ ([p
0 I 0 0 0 I,
B = 0 0 O 0l-Ei=] o and E;2=| 0

\0 00 - 0 Ko) 0

Because (I + 3'a)3’ = §'(I + a3’) we have that
DB' = B'Q
where @ is as given in the theorem. Thus. the coeflicients can be written as
C; =FD'B'E 2= FB'Q'E =GQ'E; 2

where

G=FB' = ((I -CT).-CT}..... —CT{_y) -
where we applied the identity (I —CT)33" = (I-CT) of Lemma 1.2.4. This completes the proof. i

Corollary 1.2.6. The coefficients of C(L) can be obtained recursively from the formula
Co=Cior +Y_(M+T)AC;. i=12....
j=t

where Co =1 — C and ACo = I and where weset[; =0 for j > k.
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Proof. From the proof of the Johansen-Granger representation theorem we have that C, =

GQ*'E) 5. So by defining

(4 )

A?,x
.4,‘ = . = Q."i,_l = Q‘El'z.

ey

tedious algebra (given in the Appendix) leads to the relation
Ci=Cio1+42:, Coy=-C. i=0.2....
and the structure of @ vields the equation
A = i(ﬂ-&- Ci)Agi—j. Aso=1 i=1.2.....
J=1

By inserting A»,~;, = Ci—;, — Ci—,—~1 we find the equation of the corollary. B
As a special case we formulate the representation for the vector autoregressive process of order

one.

Corollary 1.2.7. Let AX, = a3'X,_| + & be a process fulfilling Assumption 1.2.1. Then we

have the representation

t o o
Xe=CY e+(1-C)) (I+af) s, +CXo
=1

1=0
where C = 3, (a/, 3, )/,

The result of Corollary 1.2.7 is derived directly in Johansen (1996) by dividing the process into
its stationary and non-stationary part with the identity I = a (3a) 3+ 3, (a’, 3, ) o/, . The proof

of Theorem 1.2.5 made use of the more general identity I = (I — CT) 33 +C(T' - I) + Ca,a’, of
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Lemma 1.2.4. which simplifies to the identity in Johansen (1996) when I’ = I. as is the case for a

VAR(1) process.

1.3. Deterministic Terms

In this section we study the stationary polynomial’s role for the deterministic term. The deter-
ministic part plays an important role for the asymptotic analysis of this model, because the limits
of some test statistics depend on the deterministic term. The literature has developed a notation
for models with different deterministic terms which we shall adopt.

First we analyze the model H;. This model contains only a constant ®D, = pg. which in
general will give rise to a linear trend in the process .X;. Next. we also analyze its sub-model H7.
which has the deterministic term ®D, = ap,. This is equivalent to the restriction on the constant
Cp = 0. which is precisely what is needed for X, not to have a linear trend. \We also analyze the
models H and H*. Model H has a linear deterministic trend ®D, = pg + p,¢. which gives rise to
a quadratic trend in the process X;. and the sub-model H*. has the deterministic trend restricted

to D, = yy + ap,t. which prevents the X, from having a quadratic trend.

1.3.1. The Models H; and H;

When the deterministic term is simply a constant g5 = $D,. the Granger representation is given
by

t
Xe=C) e +C(L)z + C(1)g + Cgt + A.

=1
So unless Cpg = 0. the constant pg leads to a deterministic linear trend in the process X,. The

matrix C(1) is calculated in the appendix and is found to be

k-1
c(l) = -(I-CnN3a’(I-IC)-C (Z i[',) C

=1

= —BA' -CV¥C.
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where B=(I - CT)3. A’ =& (TC-I)and ¥ =Y/} iTy =17 o5 Ir,.

This result encompasses two findings from Hansen and Johansen (1998). The first is that
E(8'X,) =83 C(1)ug = & (CC - Iy,

and the second is that in AHy. where yy = apy. the linear trend vanishes while the constant in the

process is given by C(1)x = —(I — CT')3p.

1.3.2. Models H and H*

When the deterministic term contains a linear trend, D, = pg + p,t. the deterministic part of

the Granger representation is given by
2 .
3Cut? + C (g + Suy) t + C(L) (g + pyt) .

(see Hansen and Johansen (1998)). This can be re-written as

%Cultz +(Cug+ (3C+C)) py) t + (C(l),u0 - ZiC,/ll> . (1.3.1)
1=0

So unless a’, ¢y = 0 the linear trend y, leads to a quadratic deterministic trend in the process X,.
The only term of (1.3.1) not derived previously. is Y_C, iC:. This term is derived in the appendix

and is given by
BA"+ CVUC + BATBA' - BA'VC — C¥BA' - CYCVY¥C — MC‘I’C.

In model H* where the linear trend is restricted to i, = ap;. (1.3.1) reduces to

(Cuo - (I—C'F)Bpl) t+C(1)pg + ((CT — Nn3- C(1)) p,
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which encompasses a result from Johansen (1996, equation 5.20), because the expression for 1.

in Johansen (1996. equation 5.20), equals (Cuq — (I — CT)3p,).

1.4. Conclusion

We gave an explicit expression of the moving average representation for processes integrated of
order one using the companion form for the process. The explicit expression is useful to have
in studies of impulse response functions and in common features analysis. As a side benefit the
approach gives a new proof of the Johansen-Granger representation theorem. a proof that some

might find more intuitive and easy to follow than previous proofs.

Appendix A: Proofs

A.l. The Inverse of (3°.a")

In the proof of the Johansen-Granger representation theorem we need an explicit expression for

the first p rows of (3°.a%)’~!. The entire matrix is given by

(- CT)3 -CT3 e -Cri_, Ca,

(I-crmy3 -cry—-1 - -CT;_, Ca.

(rany-l = (l-cn3 -cry . e -CTi., Ca.
(I-Cr3 -Cry . -CT}., Ca

\ ({-CT)3 -CT} -CTy_, -1 Ca,

which is verified by multiplying it by (3%.a% )’ and using the identity ([ — CT')33' = (I — CT)

from Lemma 1.2.4.
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A.2. The Expression for C;

In Corollary 1.2.6 we asserted the relation C; = C;— + A2,;, i =1.2..... This relation is proved

as follows. First, notice from the equation for A; given by

\ I+n r, --- [‘,.._2 rk_[
( A
n Ly -+ Ce—2 Ty
Aa;
A= ) = 0 I 0 0 Ao, Ao =Ep2

\ e/ 0 1o

that Ak', = .42‘,_k+'_7_ k > 2. and that A‘.l = .41','_.\ + .42',, 's\'h}' _41'1 = Z;.—.l .42,_,. So that

and note that CAs; = CT1Ag ;o +---+ CTr_1 Akic-

Next consider

C. = GA, = -CT)A;, ~CT3Az; — - —CTh_, Ax.,
= (I =CT)(Az;+ A1) + C(T = Az, ~ CT3 Az, — - = CTh_, A,
= (I-C)Ag;i+ (I -CT)Ayiy — CT3As, — - — CTi_ As

= (I-C)A2; +(I—-CT) A1,
-CTy-T1)Asiy = —C(Ti_2 = Ti2)Ak—rict = C(Fiy — Tamn) Ak
= G-4z—l +‘42.l

= Cl-[ + -42.1'-

Which completes the proof.
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A.3. An Expression for C(1)

In the analysis of the deterministic terms we need to calculate
o B
C(1)=F)Y (I+8%a")' 3"Er = -F (3"a") "' 3"E\.
=0

The inverse of

/ 3a 3T, 3Ty --- 3Tik_a ITio
43 ['1 o~ r2 mee rk_‘_) ['L._,
, 0 I -I 0
3" a® =
—I 0
0 I -I )
is given by
/a’(l—rC)ré a({I-rcary - &(I-rori_,
(3-1 .)—l ([ - CF) 3 —Cri -1 —'Cri__l
Q =
\ (I-CI)3 -CT3 -1 —-Cri_, -1 }
So
( a(l-rcy -a'(I-royry --- —-a'(I-royri_, \
(3"a-)"3"= -C CTy +1 -1
-C CT3 Cri +1 )
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and therefore we find

(,@"a‘)—l I3.IE1 -

and finally that

c() = —((I-Cr)3.-CT3%..

(I -CT)3a'(rc - 1)

= BA' -C¥C

where B= ([ —CT)3. A’ =& (TC-Nand ¥ = ¥V S0, = S0

A.4. An Expression for Y 2, iC;

In the case where the deterministic term is given by ®D, = ug + u,t we make use of

[= o]

( & (I —TC) )
-C

.. =CTLy)

_C(,§§FJ> C.

=1 j=i

S (I+8"a") i=((87a")72 + (37a") 7).

1=0

/ a' (I -TC)

18

(A.1)

The second term is calculated in the case with D, = u, and the term we need to add is given by

(3.IQ-)—2 S.IEI —
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thus
F(8"a")"?3YE, = BATBA - BA'¥C
—CUBA' - CUCYC — Mcwc

so that

o =]

Y.Ci = F((3"a")"' +(37a") ") 3V E,

=0

= BA +CV¥C + BATBA' — BA'YC
—CUBA ~ CYCYUC - Mc‘pc
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Chapter 2
Structural Changes in the Cointegrated Vector

Autoregressive Model!

Abstract

I generalize the cointegrated vector autoregressive model of Johansen (1988) to
allow for structural changes. I derive the likelihood ratio test for structural changes
occurring at fixed points in time, and show that it is asymptotically x2. Moreover, [
show how inference can be made when the null hypothesis is presence of structural
changes.

The estimation technique derived for this purpose can be applied to other gen-
eralizations of the standard model, beyond the structural changes treated here. For
example, the new technique can be applied to estimate models with heteroskedasticity.

I apply the generalized model to US term structure data, accounting for structural
changes that coincide with the changes in the Fed’s policy in September 1979 and
October 1982. Contrary to previous findings I cannot reject the long-run implications

of the expectations hypothesis.

YThis chapter has benefitted from many valuable comments from my supervisor James D. Hamilton and Soren
Johansen, Tom Engsted, Graham Elliott, Niels Haldrup. David Hendry. and Juan Toro. All errors remain my
responsibility.
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2.1. Introduction

The modelling of structural changes in cointegrated processes has been addressed by several au-
thors. In the vector autoregressive framework, Seo (1998) derived the Lagrange multiplier (L)M)
test for structural changes in cointegration relations and adjustment coefficients, and Inoue (1999)
derived a rank test for cointegrated processes with a broken trend. Other approaches to modelling
structural changes in cointegrated processes are the recursive estimation to identify structural
changes by H. Hansen and Johansen (1999), the combination of cointegration and Markov switch-
ing by Krolzig (1996). the co-breaking theory by Hendry (1995), and a test for a cointegrating
relation with a structural change against an I(l) alternative was given by Gregory and B. E.
Hansen (1996).

One of the main contributions of this paper is the development of a flexible framework in
which structural changes can be formulated. The most related paper is the one of Seo (1998), who
considered structural changes in cointegration relations and adjustment coefficients, under i.i.d-
assumptions. The framework proposed here can handle a class of changes in integrated processes
that are more general than previously treated. Partial structural changes' such as, a structural
change in a particular cointegration relation or its mean can be handled, leaving other relations
unchanged. In addition, the framework is applicable under weaker assumptions than the i.i.d.
assumption. The test statistic invoked in this paper is the likelihood ratio (LR) test and it is
shown that its asymptotic distribution is standard x? when the change points are taken as given.
Another contribution of this paper is that it enables hypotheses testing under the maintained
hypothesis that the underlying process exhibits structural changes. The asymptotic x? results
remain valid in this situation.

Another main contribution of this paper is the introduction of a new estimation technique.

the generalized reduced rank regression (GRRR) technique. This technique has an applicability

LPartial structural changes in stationary processes has been analysed by Bai and Perron (1998) and Bai (1999).
The case of an unknown change point leads to a non-standard asymptotic distribution. See Seo (1998) or
Andrews and Ploberger (1994). [ treat this aspect in Chepter 3.
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beyond the estimation problems that arise from structural changes.

Estimation of the cointegrated vector autoregressive model was solved by Johansen (1988) as
an eigenvalue problem, also known as reduced rank regression. This technique is directly appli-
cable to estimation under simple linear restrictions on cointegration relations, 3. and adjustment
coeflicients, «. Johansen and Juselius (1992) proposed a switching algorithm for estimation under
slightly more general restrictions. Boswijk (1995) derived a general estimation technique that can
handle linear restrictions on vec(a) and vec(3). where vec(-) is the vectorization operator.

The estimation technique of Boswijk (1995) is applicable to several estimation problems we face
with structural changes in the cointegrated VAR. The GRRR technique introduced in this paper is
a generalization of his technique in two directions. First of all. the GRRR technique allows for linear
restrictions on all parameters apart from the variance parameter, by which it achieves a generality
similar to the minimum distance approach by Elliott (1997, 1998a). since the generalization to
nonlinear restrictions expressed by functions that are well-behaved® is straightforward. Secondly.
the GRRR technique allows for a general covariance structure and is therefore applicable to models
with heteroskedasticity.

The result of this paper is applied to the US term structure of interest rates. The results are
that the long-run implications of the expectations hypothesis cannot be rejected once structural
changes have been accounted for.

The paper is organized as follows. Section 2 contains the statistical formulation of various
structural changes in the cointegration model. The estimation problems are treated in Section 3.
and Section 4 contains the asymptotic analysis. Section 5 contains an empirical analysis of the
expectations hypothesis applied to the US term structure of interest rates. Section 6 concludes.

and the appendix contains proofs.

P Functions that are continuously differentiable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

2.2. The Statistical Model

In this section we give some of the details of the cointegrated vector autoregressive model by
Johansen (1988). The model is generalized to allow for various structural changes and it is shown

how these changes can be formulated as parameter restrictions in a unified framework.

2.2.1. The Cointegrated Vector Autoregressive Model

I take the p-dimensional vector autoregressive model X, =T, X,_{ +--- + e Xi -t + ®D, + =, as
my point of origin, where ¢, is assumed to be independent and Gaussian distributed with mean
zero and variance Q. The variable D, contains deterministic terms such as a constant, a linear

trend and seasonal dummies. The error correction form for the model is

k-1
AX, =MX,y + Y TiAXi_, + 8D, + <.
=1
and it is well known that if the characteristic polynomial, here given by A(z) =I(1 —z) — Iz —
Zf_;l [:(1 — z)z*. has all its roots outside the unit-disk, then X, is stationary. If the polynomial
has one or more unit roots, then X, is an integrated process as defined by Johansen (1996). A unit
root implies that [1 has reduced rank r < p and if the number of unit roots equals p — r. then the

process X, is integrated of order one, denoted I(1). When I1 has reduced rank. it can be written

as a product of two p x r matrices [1 = a3’. such that the model can be expressed in the form

k—1
AXe=aB'Xe1 + 3 _TiAXe_, + D, + <. (2.2.1)

i=1

This process can be inverted to an infinite moving average representation, also known as the
Granger representation, (see Chapter 1 or P. R. Hansen (2000b)). The representation shows (i)
how the adjustment coefficient. . relates to the common stochastic trends in the process and (i)

that 3 defines the cointegration relations.
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[t is convenient to rewrite the model as

Zoe = a3’ Zy + OZp + <. 2.2.2)

where Zo, = AX,. Z1e = Xe—1. Z2e = (AX[_,.- ... AX[{_;11-Di) and ¥ = ([y,....[x_y. P). so
we separate the regressors with reduced rank parameters from the regressors with unrestricted
parameters. In some situations we want to add variables to the cointegration space. such as
exogenous variables or simply a linear trend or a constant. In such cases we redefine Z;, to include
these variables and denotes its dimension by p; rather than p. which denotes the dimension of Zg,.
The regression problem in equation (2.2.2), with no additional restrictions on the parameters, is
referred to as a reduced rank regression (RRR).

We define a generalized reduced rank regression. as the following regression problem:

Zog = ABIZu -+ CZQ: + & (2.2.3)
s.t. vec(A.C) = Gu.
vec(B) = Heg.

where G and H are known matrices with full column rank. and {z,} obeys the following assumption.

Assumption 2.2.1. {z:} is a sequence of independent p-dimensional Gaussian variables. where

¢ is independent of Z,, and Zy, and has the marginal distribution N(0.Q(t)).

By this formulation the i.i.d. assumption on {s.} is relaxed. by no longer requiring an identical
distribution. \We leave the exact structure of Q(¢). t = 1..... T to be determined from model-
specific assumptions on heteroskedasticity. The assumption still implies independence of {s:}.
Estimation and inference under a weaker assumption than Assumption 2.2.1 is treated in Chapter
3. see also P. R. Hansen (2000a).

Obviously. the estimation problems that can be solved by a RRR can also be solved by a
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GRRR. by setting G and H as identity matrices, and with Q(t) = Q.
As shown by Boswijk (1995), the following assumption is necessary for generic identification

of the parameters.

Assumption 2.2.2. The matrices H and G in (2.2.3) have full column rank and are such that A
and B have full column rank for all (/. ')’ € R™ except on a set with Lebesgue measure zero, (n

denotes the number of column in (H.G)).

Let the covariance parameters be expressed as €(t) = Q,(8). 6 € ©g. t = 1..... T. This

formulation does not necessarily impose any restrictions on the parameters.

Assumption 2.2.3. The parameters v. ; and 8 are variation free. that is

(v.£.8) €O, x O, x Oy.

This assumption is convenient for the parameter estimation. Suppose that Assumption 2.2.3

holds. and consider the procedure that iterates on the following three equations:

(n)

v = arg max L(v. ("7 gn=b),
®veb.. (v )
£ = arg max L(v™. . 6077Y),
wES.,
6™ = argmax L(&(™. (™. 9).
g max L( ¥ )

n > 1 until convergence of the likelihood function L, starting from some initial values of the
parameters (v(9, £(0), 9(0)). This procedure has the nice property that the value of the likelihood
function is increased in every iteration; the ordering of the three parameters is irrelevant. Since
the likelihood function is bounded by its global maximum, the procedure will eventually converge.
Since finding a stationary point of the three equations is equivalent to solving the normal equations,
a convergence point, say (zl'.;:.é). will satisfv the normal equations. So whenever the normal

equations uniquely define the global maximum of L. maximum likelihood estimation is achieved
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with this procedure. The information matrix is asymptotically block diagonal which eliminates
existence of local maxima asymptotically. However, in practise local maxima may exist in finite
samples. so one should start the algorithm with different initial values of the parameters, and see
if the algorithm converges to the same value of the likelihood function.

All the models we consider in this paper satisfy Assumption 2.2.3. An example of a model that
does not satisfy this assumption is the GARCH model. This model has a dependence between the
parameter space of the covariance matrix, typically denoted by H,. and the other parameters. due
to the dependence of H, on the estimated residuals such as Z,_;.

We need to calculate the degrees of freedom in the parameter a(¢t)3(t)’. The following lemma,

taken from Johansen (1996). is useful for this purpose.

Lemma 2.2.4. The function f(r.y) = ry’. where rispxr (r<p)landyisp, xr (r < p1). is

differentiable at all points, with a differential given by

Df(x.y) = r(dy) + (dx)y’

where dy is p x r and dr is py x r. If r and y have full rank r then the tangent space at (z.y).

given by {z(dy)’ + (dr)y’ : dr € RP**". dy € RP*"} has dimension (p + p; — r)r.

So. in the case of a reduced rank regression, with r = a and y = 3. the parameter space in

which [T = a3’ can vary has dimension (p + p; — r)r.

2.2.2. Structural Changes in the Cointegrated Vector Autoregressive Model

We now show that structural changes in model (2.2.1) can be viewed as a particular form of
(2.2.3). Without loss of generality. we can focus just on changes in a and 3, because changes
in the parameters I'y. .... ['t_; or ® in (2.2.1) are easily handled by redefining Z;, and ¥. For
now we keep the covariance matrix. (2. constant, but later we also generalize the model to allow

for structural changes in this parameter. Estimation, when all parameters change their value is
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ecasily done by estimating each subsample with the RRR technique, however in most applications
it is desirable to keep some parameters fixed to avoid that the dimension of the parameter space
increases too dramatically.

So. the generalization of model (2.2.1) that we consider is

X
o
-

=

Zoe = a(t)3(t) Z1e + WZa + <. (2

We shall consider different choices of the time-dependent parameters a(t) and 3(¢t). More specif-
ically. we consider various situations where a(t) and 3(t) are piecewise constant, which can be

expressed as

~
o
(S]]
-

a(t)3(t) = a3 e + - + g3y It (2.

where [;,. j = 1..... q are indicator functions that determine which «; and 3; are active. This
formulation does not require o; and a; to have the same number of columns i # j. as long as a;
and 3; have the same number of columns. So the formulation allows for changes in the number
of cointegration relations as well as scenarios where some relations are constant over several sub-

samples while other relations change.

By defining Zy;; = [, Zy,. j = 1..... q.and Zy, = (Z},..... Z14)' - we obtain the regression
problem .
( 3, 0 0 0 \
0 3 0
Zoe = (a1.....aq) | : Zit + W2y + 4.
0 8q-1 O
\ 0 0 - 0 3

with a block diagonal structure of the matrix containing the cointegration relations. denoted by
B. This structure can be expressed as a linear restriction on vec(B) = H,>. and the regression is

therefore a special case of equation 2.2.3.
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Structural Changes in a and 3

Consider a situation with ¢ — 1 structural changes that occur at time T;. .... T,_;. so that a, and

J, can take on q different values. This can be formulated as

(‘31 t=1..... T

3, =«
| 3, t=Tp1+1..... T
and
.
(e 3] t=1..... T1
a t=Ty+1..... T
Qg =«
Qq t = Tq_l +1..... T.
So in this case we define 2y, = Z1.[(t < T). Zi2e = 21 I(Th +1 <t < To). ... Z1qu =
Zyl(Ty-1+1 <t <T)and A (Z11e----- {qt)” and obtain a model with the form of equation

(2.2.3). This formulation allows for a change in the number of cointegration relations. Let r,
denote the cointegration rank in subsample i. i = 1. .... q. Then the dimension of the parameter
space of [1(t) = a(t)3(t)’ is by Lemma 2.2.4 found to be 37_ (p + p; — r;)r; where r; is the rank
ofa,d.i=1..... g. If the rank is constant over the entire sample, the expression for the degrees

of freedom simplifies to q(p + p; — r)r.
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Structural Changes in the Adjustment Coefficients: o

If the structural changes only affect the adjustment coefficients, a. whereas the cointegration

relations remain constant, we can express the model as

Zoe=(ar.....ag) | ¢ . | Zu+ U2y + 2.

where Z|, is as defined above. Since 3 is constant over the sample, so is the cointegration rank r.

and the dimension of the parameter space for II(t) is simply given by (qp + p1 — r)r.

Structural Changes in the Cointegrating Relations: 3

When the structural change is solely due to changes in the cointegration relations 3(t) while a(t)

remains constant, the model simplifies to

Zoe = Qallluzlg + - T aéglqtzu +W¥Zs + 2,

= « (311 ..... 3;) Zu + \I’Z‘_lg <+ £,

where Z), is as defined previously. Here we again obtain an equation of the form of (2.2.3). but
in this case without additional restrictions on 4. B. and C. i.e. G = 1. and H = [, 4. In this
situation only a constant cointegration rank. r, is meaningful and the dimension of the parameter
space for [I(t) is given by (p+ gp; — r)r.

The relations between the different structural changes are displayed in Figure 2.2.1. along
with the relevant asymptotic distribution and degrees of freedom. The asymptotic distribution is

derived below. and it is not surprisingly found to be asymptotically 2.
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General structural change
Zoe = o131 Z11e + 28352120 + W22 + e

X2((p —r)r)
Structural change in « Structural change in 3
Zoe = 01,3llez + 02.5'2121 +WZo + £ Zor = 0(51.32)'(2{;“ Z;Zt), +WZa + ¢,
x*(pr) X*(pir)

Model without changes
Zae = a3 Zye + W2 + 5,

Figure 2.2.1: The relations between the different types of structural changes. The asyvmptotic
distribution of the individual LR test is x2 in all cases, with the degrees of freedom reported in
the brackets.

Temporary and Permanent Cointegration Relations

The scenario where some cointegration relations are present in the entire sample. whereas others
are only present in a subsample can also be expressed in the form of equation (2.2.3). The simplest
situation is where there are r; permanent cointegration relations, say 3,. and for ¢t > T} + 1 there
are an additional rs — r; temporary cointegration relations. say 3,. (linearly independent of 3,).
This situation leads to two different cases - one where the adjustment coefficients corresponding to
J, remain constant, and one where they may differ in the two subsamples. The latter is likely to

be the most relevant, since the introduction of an extra adjustment from the added cointegration
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relations might affect how the process adjusts to the permanent cointegration relations.

First we consider the case where a; remains constant. This model is formulated as

Zoe = B2+ ael.ZulpsT) + W22 + &4
7
31 0 Z[[
= (aj.a.) + W2Zs + 2y,
0 3.: lel(t>T,)

and the dimension of the parameter space for I1(¢) is slightly more complicated to derive. The
degrees of freedom in II; are given by (p + p; — ri)r;. and since IIo = I1; + a.3. the additional
contribution from I, is given by [p + (py — r1) — (r2 — r1)](r2 — r1). Adding the two terms gives
the degrees of freedom in II(¢) to be (p + p; — ra2)ra + (r2 —r1)ry.

The model where the adjustment coefficients to the permanent cointegration relations may

change. is formulated as

Zo = 0113'12u1(15'n) + (021706)(61-35)’thl(t>T1) +WZy + 2
3 0 0 Zuli<T)
= (ai1.0a12.0¢) - + W2y + 2.
0 3, 3. Ziulust)

which is also of the form of equation (2.2.3), but with a more complicated structure of H. due to the
cross restrictions we have on B. The degrees of freedom are found by adding up the contributions
from [1;. a3 3] and a.3.. These are given by (p+p1 —r)ry. pr1 and [p+(p1—r1)—(r2—r)](r2—r1)
respectively, where we used that 3, may be chosen orthogonal to 3;. Adding the three terms up.
gives the dimension of I1(¢) tobe (p+p1 —ro)ra + (p+ro —ry)r;.

The former model is obviously nested in the latter, and both models are nested in the model
where there are not necessarily any relations between the cointegration relations in the two samples.
This model has a structure as given above with r; cointegration relations in the first subsample

and r» in the second. So the model has (p + p; — r\)r1 + (p + p1 — r2)r2 free parameters in
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[1(¢). The relations between these three models are displayed in Figure 2.2.2. Below we prove
that the likelihood ratio test for this hypothesis is asymptotically x? with degrees of freedom that
correspond to the difference in dimensionality of [1(¢). as one would expect.

The extension to models with multiple sets of temporary cointegration relations in individual
and overlapping subsamples is straightforward, only the calculation of degrees of freedom can be

somewhat tricky.

General structural change model
r, cointegration relations for t < T}
r, cointegration relations for t > 7] + 1

Zor = ar 31211 + 0235712 + W22 + ¢

l X((p1 = r2)r)

Permanent cointegration relations: r
Constant adjustment coefficients: =
Temporary cointegration relations: ro —r;

Zae = a8y Z1n1e + (21, )(3,.3.) Zi2: + ¥ 22 + ¢

l \A(pry)
Permanent cointegration relations: r
Constant adjustment coefficients: v

Temporary cointegration relations: ry —r;
Zor = a1 31210 + ac 302120 + W22 + ¢

Figure 2.2.2: The relations between the different models with structural changes and a change in
the number of cointegration relations. The distribution of the LR test statistic between two of the
models is asymptotically 2 with the degrees of freedom given in the figure.
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Structural Changes in the Covariance Matrix

Structural changes in the covariance matrix also leads to a GRRR. The simplest case is a single
structural change in the covariance matrix at time T. So var(s,) = Q; for ¢t < T} and var(s,) = Q2

for t > T;. which implies the following structure on the covariance matrix

Ir, = @ 0

0 [’r._'r1 > Qg

The combination of structural changes in the covariance matrix as well as other parameters. will

also lead to a GRRR.

Linear Restriction on Adjustment Coefficients and Cointegration Relations

Combining hypotheses of structural changes with linear restrictions on the cointegration relations
will not complicate the estimation problem. because the two parameter restrictions can jointly
be formulated as a linear restriction vec(B) = Hy for a known matrix H and some parameters
+- Adding linear restrictions to the adjustment coefficients. a;. .... a4 can be formulated as

vec(A) = Gu. and is therefore also a GRRR.

2.3. Estimation

Estimation of the cointegrated vector autoregressive model, and other models that have the struc-
ture of equation (2.2.2), can be explicitly solved as an eigenvalue problem by reduced rank regres-
sion techniques. The method of reduced rank regression was developed by Anderson (1951) and
applied to the 7(1) model by Johansen (1988).

The advantage of reduced rank estimation is that an explicit solution is obtained without
iterations. Fortunately this method is applicable to estimation under simple linear restrictions on

the reduced rank parameters. However, in most of the structural change models we face restrictions
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that are beyond what the technique can handle. So a more general estimation technique is needed.

A few of the problems can be formulated as regression problems that can be handled by the
switching algorithm of Johansen and Juselius (1992). This algorithm is an iterative procedure that
in every iteration simplifies the problem to a reduced rank regression by keeping a subset of the
parameters fixed. This method has the nice property that it increases the value of the likelihood
function in every iteration, but unfortunately applications have shown that convergence can be
very slow. More problematic is that general convergence to the global optimum cannot be proven:
indeed it is easy to construct examples where the method will not converge.

A more general estimation technique was proposed by Boswijk (1995). This method is similar
to the switching algorithm, in the sense that it increases the likelihood function in every iteration.
It is more general because it can handle estimation problems with linear restrictions on vec(B) and
vec(A). This method is therefore sufficient for most of the estimation problems that arise from
structural change models. Applications of the method have shown that convergence is obtained
in few iterations, and that it does converge to the global optimum. The fast convergence is not
surprising because the information matrix is asymptotically block diagonal.

More general yet is the minimum distances approach by Elliott (1997, 1998a), which can
estimate parameters under the general restriction g(#) = c. where 8 is the vector of parameters,
c is a constant and g is a well-behaved function. This method minimizes 0'%9 subject to the
constraints g(6) = c¢. where Vo is an estimate of the asymptotic covariance matrix. This method
is asymptotically equivalent to the maximum likelihood estimation, and with suitable choice of
f;—, and if applied iteratively. (by recursive reestimation of Vé as the estimate of 8 changes), the
minimum distance methods leads to the same estimator as the maximum likelihood method.

As we shall see below, it is possible to estimate under more general restrictions than those
considered by Boswijk (1995) and Elliott (1997, 1998a). By handling restrictions as formulated in
model (2.2.3) we obtain the same generality as the minimum distance method by Elliott (1997.

1998a). and can in addition estimate models with heteroskedasticity.
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In the following we consider the reduced rank regression model
Zog = AB’Z“ + CZ'zg + Z¢. (2.31)

with various restrictions on the parameters, under Assumptions 2.2.1 and 2.2.2. We denote the
dimension of Zg,. Z1; and Z,, by p. py and po respectively, and for notional convenience we define
the moment matrices M;; = & 7| Z;,Z},. i.j =0.1.2, the residuals Ro = Zoe — Mo2 M5 Zoy.
Ry =2y - ;\11'_)“[2—2122g. and the moment matrices of the residuals S,, = % Z;r:_.l RuR}. i =

0.1.

2.3.1. Reduced Rank Regression

Estimation of reduced rank regressions is described in the following theorem.

Theorem 2.3.1 (Reduced Rank Regression). The unrestricted estimators of Model (2.2.3)

are given by

B = (i..... tr)o (2.3.2)

A(B) = SuB(B'SuB)”' (2.3.3)

Q = Sgo— So1BA’ + AB'S;1BA’ — AB’S\o. (2.3.4)

C = MpMy' — AB MM (2.3.5)

where (¢y..... 0y-) are the eigenvectors corresponding to the r largest eigenvalues Alo.... A of the

eigenvalue problem

I/\Sn - S[()So-olSQII = 0

and where o is any r x r full rank matrix. by which B can be normalized. The maximum value of
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the (conditional) likelihood function is given by

L7YT(A.B.C.Q) = (27e)” |Sool [J(1 - A)-
An algebraic proof that uncovers the structure of the problem is given in the appendix whereas
the original proof can be found in Johansen (1996).
This theorem is directly applicable to the cointegrated vector autoregressive model given by
equation 2.2.1. The maximum likelihood estimate is obtained by defining Zo: = AX,. Zi; = X,

and Zy = (AX[_;..... AX|_1-DrY-

2.3.2. Generalized Reduced Rank Regression

Theorem 2.3.2. Let the parameter A. B. and C be restricted by vec(A.C) = Gv and vec(B) =
Ho and suppose that Assumptions 2.2.1-3 hold.

The maximum likelihood estimates A. B. C. and Q(t) of A. B. C. and Q(t) will satisfy

-1
B Z"ZuB B’ ZveZ5,

T
vec(A.C) = Gy < Q)" G (2.3.6)
=T ZnZl, B ZanZ,
T
Gy vec () Zou( 2 B.Z4)) .
¢=T - .
vec(B) = [ Z[Aﬁ(t ‘A w2021, H] (2.3.7)

xH' > vec (zu(zo, - C'Zgg)'Q(t)-U.-i)

t=1

and Q(t) = Q,(6). where 8 is given from the (model specific) equation

D

= arg A.B.C.6.20.2,.2,). 2.3.
arg max L(A. B.C.6. 20. 2. 2) (2.3.8)
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The maximum value of the likelihood function is given by

oY

L T )
Loax(A.B.C.0) = (27) 77 J]1%t)|~ ¥ exp (-% PREATON l) :
t=1 T =1

where ::¢ = ZOl - /‘iB,Zu - éZgg.

The proof exploits that the estimation problem reduces to a GLS problem, when (A.C.Q(¢))
or (B.€)(t)) are hold constant. The proof is given in the Appendix.

The theorem yields a procedure for parameter estimation, in the sense that the parameter
estimates can be obtained by iterating on the three equations until convergence. from some initial
values of the parameters. As described in the paragraph following Assumption 2.2.3, this procedure
will converge to parameter values that satisfy the normal equations.

We now treat situations with fewer parameter restrictions.

Corollary 2.3.3. Let the parameter A. B and C be restricted by vec(A.C) = Guv and vec(B) =

Ho and suppose that {c;} is i.i.d. Gaussian N(0.Q).

The maximum likelihood estimates of A. B. C and (? satisfy- the equations

-1

B'M\ B B'Mp . ) .
tealedi < Q™ HYG G’vec(_Q“(.\ImB..\[og)).

My B Moo

vec(A.C)

vec(B) = H [H' (.‘i’Q—l:i % .'\Iu) H] - H'vec (-'\110 - ;\[ogé')f!‘l;i) .

Q = T-YZ20-AB'Z, —C2:)(Zo - AB'Z, - CZ,)".

The maximum value of the likelihood function is given by

LZ2T(A.B.C.Q) = (2%e)? Q.

If C is unrestricted we obtain the following result of Boswijk (1995).
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Corollary 2.3.4. Let A and B be restricted by vec(A}) = G¢{ and vec(B) = H¢. for known

matrices G and H. Then the maximum likelihood estimates satisfy the equations
N .. -1 . .
vec(B) = H [H' (A’Q“A 0 Su) H] H (A' 2 slo) vec (Q“) (2.3.9)

and

:hr
]

Gle (B5uB=1,)G] e (B @71 vee (Sor) (2.3.10)

)

= Soo — So1BA' + AB'S;,BA’ — AB'S)0

Mo M5 — AB M2 M.

ql
I

The maximum value of the likelihood function is given by

L72T(A.B.C.Q) = (27€)” |Q].

Corollary 2.3.5. Let B be restricted by vec(B) = H¢. Then the maximum likelihood estimates

satisfy- the equations

vec(B(A.Q) = H[H (40714 :‘:S“)H]—lH'(,—i’  S10) vee (071
iB) = SuB(B'SuB) .
OB) = Sw-SuB(B'SuB)  BSo.
C = MpMy' - AB MM

The maximum value of the likelihood function is given by

L72T(A.B.C.Q) = (2=e)” Q).
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With these results we have the tools available to estimate the parameters in the cointegrated
vector autoregressive model under all the various structural changes considered in the previous
section. However. the theorems presented here have a broader applicability. and can be used to
estimate models with parameter restrictions that need not be related to structural changes. for

example models with heteroskedasticity.

2.3.3. Applicability

Example 2.3.6 (Structural changes in the covariance matrix). Consider the cointegrated
vector autoregressive model (equation (2.2.1)). with a structural change at time T,. in the sense
that a(t) = ay, 3(t) = 3, and Q(t) = Q, fort < T; and a(t) = a2, 3(t) = 3, and Q(t) = Qs for
t > T, + 1. This estimation problem can be written in the form of Model 2.2.3. The maximum

likelihood estimators of 0; and Q» are given by

- Ti
O = TN g
t=1
i T
Q = (T-T)™' ) &z
t=T
SoQ(t). t=1..... T can be expressed in the functional form required by Theorem 2.3.2.

Example 2.3.7 (Heteroskedasticity). Models with the following type of heteroskedastic errors

var(ze) = Q¢ = fo(Qeo1. Qe_a...... Xeo1. Xe—2....)

can be expressed with the functional form in Theorem 2.3.2.

2.4. Asymptotic Analysis

For simplicity. we derive the asymptotic results in the case of a single structural change at time T;.

and with the number of cointegrating relations being constant, r. However, it will be clear that the
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results hold in the general situation with multiple changes, and varying number of cointegrating
relations.

The process is described by

k-1

AXy = a1y Xemrlsty) + @285 Xe 1>y + ) TidXooi + &e.

=1

where ¢, is i.i.d.? N(0.Q(t)). Q(t) = Q, for t < T, and Q(¢) = Q, for t > T;.
In addition. we assume that the usual /(1) assumptions hold in both subsamples. Specifically.

that the roots of

k-1
I1-2z)- a8z — ZF,'(I —-2)z'| =0

=1
are outside the unit disc or equal to one, and that o}, (I =y —---~Tx_;)3;; has full rank p—r.

i =1.2.

2.4.1. The Granger Representation for Change Processes

In order to study the process’s asymptotic properties. we need to derive the Granger representation

for this process. The individual Granger representations for each of the sub-samples are given by

t k—1
Xe=CY e +C(L)e, +C(Xo - Y _TiXo:) t=1....T.

=1 =1

and
t k-1
Xe=D Y s+D(L)ee+D(Xr, -y LX) t=Ti+1..... T.
=T +1 =1
where C = 3,, (a’u['Bu_)—la'U_, D=3, (a,T3,,)  'ay, and T =1—-T; —--- = [x_;. (see

P. R. Hansen (2000b)).

In order to get the representation in the appropriate form we need to express the second

' The asymptotic results will hold under more general conditions, though not always with the same asymptotic
distribution. Both the Gaussian assumption and the i.i.d. assumption can be relaxed to {s;} satisfving a Functional
Central Limit Theorem, (see White (2000)).
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representation with initial values depending only on X,. t = 0.—-1..... rather than D(XT, —

Tk'll [, X1, -.). This is obtained by the expression

L 1=

T, k-1
&+ C(L)er, + C(Xo - _TiXo_y)
L

=1

k-1
D()(Tl - ZI‘.XTI_.') = D [C
=1

Ti—-1 k-1
- (C Z i+ C(L)er, -1 + C(Xo — Z Fz‘x\’o—z‘))

=1 =1

T, —k+1 k—1
Y (C Y s+ CL)er k1 + C(Xo - Y TiX _.))]

i=1 i=1

=1 1=1

T, k-1
= D [cms,- +C*(L)er, +TC(Xo — Y r.xo_;)J

Tx k—'l
= DICY = +DC"(L)er, + DITC(Xo— ¥ _[.Xo-.).

=] =1

where
C(Lyer, =T = (I =T1)C)er, +(C1 = T1Co)er, -1 + (C2 =T Ch)zp 2 + - - -

is a stationary process. So altogether we have the Granger representation

t k-1
Xe = CY &i+C(L)e+C(Xo— Y TiXo,) t=1..... T (2.4.1)
=1 =1
t T
X = D Y &+DICY «+ D(L)s + DC* (L), (2.4.2)
=T +1 =1
k-1

+DIC(Xo~ Y TiXo_) t=Ti+1.... T.

=1

Note that we have the stationary cointegrating relations in the second sub-sample 3, X, = 3, D(L)e,.
which is identical to what it would have been in the case of a constant process. For the first sub-

sample the results are trivially the same as in the standard case without changes.
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2.4.2. The Continuous Time Limits

In an asymptotic study of the process. we shall, as T approaches infinity, keep the proportion of
observations in each sub-sample constant. So we define p = Z% which denotes the fraction of
observations in the first sub-sample.
Donsker’s invariance principle gives
{Tu]

T7:) e & Wi(a). u € [0.1].

t=1

where 11"(z) is a Brownian motion with covariance matrix Q. and where = denotes weak conver-

gence. We can split this into two independent Brownian motions which gives us

. T [Tu] .
T3 [ Y e+ S o | W)+ W) -W(p). u>p
t=1 t=T+1

So the random walk element in X, in each of the sub-samples, has the continuous time limits:

{Tu]
T-%-cz;-, 2 CW(u). u<p
t=1
T, [Tu]
T3 [ DLCY =e+D Y | = DICW(p)+D(W(u)—WW(p)). u>p. (24.3)
t=1 t=T1+1

Equation (2.4.3) has an important implication for unit root tests, in processes with structural
changes. Standard Dickey-Fuller type distributions, such as [ (dB) B’ [f BB’a’u]_1 [ B(dB) do
not define the asymptotic distribution in this situation. because the Gaussian term DI CIV(p).
that comes from the initial values. does not disappear. A unit root test based on observation after a
structural change will therefore involve a term such as [ (dB) (B+Z)' [{(B + Z)(B + Z)'du] ! J(B+
Z)(dB)' . However. this problem does not occur if a constant (restricted to the cointegration space

or unrestricted) is included as regressor, see Chapter 4.
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From the Granger representation we find that

-1z | Sralesge | oo CW(u)l(ugp)

Xiru Lu>p) [DTCW1(p) + D (W(u) — W(p))] L(u>p)

since the other terms vanish in probability. Let

B =
0 3,

let B, be the orthogonal complement to B.i.e. B, B =0and let B, = B, (B’, B,)~'. We define

Gi(u) CW(u)l(u<p)

Il
Q|

G(u) =
Ca(w) [DECWi(p) + D (W () — W ()] Lusp)

and by the continuous mapping theorem we have with u = ¢/T that

’

T - -Y u 1 u ‘x’ Tu 1 u - 3 !
T——2 ZBIL [T ] (u<gp) [ I (u<p) BL .ti, / G(u)G(u)du
t=1 XruLu>p) XiTu)l(u>p) °
B I3 Gi(u)Gi(u)du 0
0 J, G2(u)Ga(u)du

With this notation, the asymptotic results for unrestricted parameter estimates (G = [ and H = I)
of A. B. C. and Q(¢). say A,. B,. Cy. and Q,(t). follows from Johansen (1988. lemma 13.1, 13.2).
The results are that (a normalized) B, is super consistent. with a mixed Gaussian asymptotic
distribution. and that A4, is asymptotically normal. Further it also follows that the LR test of
some over identifying restrictions. have a x? asymptotic distribution.

Consistency is not affected by imposing valid restrictions. and the results for the restricted

parameter estimates given by expanding the normal equations. Assume for simplicity that Q(¢) is
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constant, then

T -1
vec(B) = H [H’ [,i's‘z—‘fi T2 Zzuz;,] H]
t=1

T
<H' 3 vee (T Zu(AB 2y + (C = O) 2o+ 227V )

t=1
-1
= \ec(B)TH[H'[“-u ZZ" } J
T
xH' )" vec(Zusi2VA) + op(1).
t=1

which by the consistency of A. C and € shows that

-1
Tvec(B-B) % H [H’ [.4'9“1.4 % By / [ G(u)G' (u)duB, ] H]
0

x H'vec (/ G(u)dIVQ—“A) .

which is a mixed Gaussian distribution. Similarly

-1
. . . r ( Bz,.z,,B B'Z.Z )
T'%ec(A-A.C-C) = Glo |1y e el La-t 6
t=1 Z-)_zZizB Zngél

G\ec< ‘T""zz-,(z B.Z5,) ) )

which asymptotically has a Gaussian distribution. The case with a varying €Q(t) leads to the same
results, although the expressions have a more complicated structure.

From these results it follows by arguments similar to the ones of Johansen (1996, theorems
13.7. 13.9). that the likelihood ratio test has an asymptotically x2 distribution, for hypotheses

that can be formulated as linear restrictions.
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2.5. Empirical Analysis of the US Term Structure of Interest Rates

In this section we analyze the US term structure using the structural change model we developed

in Section 2.

2.5.1. The Expectations Hypothesis

A version of the term structure of interest rates is that the expected future spot rates equals
the future rate plus a time-invariant term premium. We adopt the notation from Campbell. Lo.
and Mackinlay (1997) and let p,,. denote the log of the price of a unit-par-value discount bond
at date t. with n periods to maturity. The continuously compounded yield to maturity for an
n period bond is defined as yn, = —%pn,z. and the one-period future rate of return, earned
from period t + n to t + n + 1. (known at time ¢) is given by 1 + F,, = Pn.¢/Pn+1.¢. such that
fae =10g(1 + Fnt) = pn,t — Pa+l.t-

The expectations hypothesis® states that
fn.! = Et(yl,t+n) + An.

where A, is the term premium. The restriction imposed by the expectations hypothesis is that

the term premium does not depend on t. From the Fisher-Hicks relation y,, = n~! E;‘__'_'Ol fite.

n=12..... and the identity E;(y1,e+;) = Zf__.l E(Ay1,t+:i) + y1... we obtain
n-1 j
Ynt —Yre =n"" Z Z E(Ay1e+:) + Ln. (2.5.1)

J=11=1

where L, = n7! z;‘z‘ol A,. This equation shows that if y;, is I(1), such that the terms Ay,

and n=! S "2 S E,(Ayyc4:) are stationary®. then y,, must be integrated of order one and
Jj=1 i=1 ' gr

*For an overview of the expectations hypothesis theory and empirical studies of interest rates, see Shiller (1990).
"The stationarity of E¢(Ay1,:4+,) does not hold in general, bur will hold for time-homogeneous processes. In
particular it will hold for the vector autoregressive process we consider in this paper.
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yne and y,, are cointegrated with cointegration vector (1. —1) as first analyzed by Campbell and
Shiller (1987). Since the relationship will hold for any integer n. any pair of yields to maturity
will be cointegrated with cointegration vector (1, —1). We shall call this implication the long-run
implication of the expectations hypothesis. This is only one of several implications of the expec-
tations hypothesis. Equation (2.5.1) is the motivation for modelling interest rates as cointegrated
processes, and illustrates the convenience of using this framework to test the long-run implication.

The implications of the expectations hypothesis are commonly rejected when tested on US term
structure data; this is also the case for the long-run implication as concluded by Hall, Anderson,
and Granger (1992), Engsted and Tanggaard (1994), Johnson (1994), and Pagan, Hall, and Martin
(1996). Hall, Anderson, and Granger (1992) and Engsted and Tanggaard (1994) attributed their
rejection to the unstable period for interest rates between September 1979 and October 1982. when
the Fed did not target short interest rates directly. This period is also known as the period with the
nonborrowed reserves operating procedure. Pagan, Hall, and Martin (1996) gave another possible
explanation for the rejection. They extended the cointegration model with a parameter, ~. for
the elasticity of volatility with respect to the level of the shortest interest rate. With simulations,
they showed that hypothesis tests on cointegration vectors over-reject as v increases. and found
the effect to be substantial as v increases beyond 0.5.

Whereas the expectations hypothesis has been rejected by most studies of US data (see Shiller
(1990) for an overview), the resuits from studies of the term structure in other countries are mixed.
Hardouvelis (1994) rejected the expectations hypothesis in 3 of the G7 countries. Cuthbertson
(1996) found some evidence in favor of the expectations hypothesis using UK interbank rates and
Engsted and Tanggaard (1995) found the long-run implications to hold for Danish data in the

period where the central bank targeted interest rates.
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2.5.2. Structural Changes in the US Term Structure of Interest Rates

There are several studies that find evidence of a structural change in the US term structure of
interest rates. Hamilton (1988) applied a Markov switching model to 3- and 12-month T-bills.
and the model detected a period that precisely coincides with the period with the nonborrowed
reserves operating procedure as a separate regime. H. Hansen and Johansen (1999) have developed
a recursive estimation of the cointegrated vector autoregressive model to detect structural changes.
Their application to US data also indicates structural changes around the fall of 1979 and the fall
of 1982.

Structural changes of US interest rates have also been analyzed within the framework of con-
tinuous time models. Chan, Karolyi, Longstaff. and Sanders (1992) estimated a diffusion process
for the short term interest rate and rejected a structural shift in October 1979, and then estimated
the elasticity of volatility to be 1.5. However Bliss and Smith (1998) found significant structural
changes when the possibility of a structural shift by the end of 1982 is included in the analysis.
They found evidence of structural changes in both 1979 as well as in 1982 when the Fed reversed
to target the Fed funds rate. After these changes are accounted for, an elasticity as low as 0.5 is
consistent with their data.

These studies have shown that the US term structure has had structural changes. and it is not
surprising that these changes affect point estimates and inference.

Elliott (1998b) showed how standard inference can be misleading when there is a root close
to unity. Using this local-to-unity approach, Lanne (1999) rejected the expectation hypothesis for
US data in the period 1952:1-1991:2. However, after accounting for a structural change in 1979:10
the hypothesis could not be rejected.

In this paper, interest rates are modelled as I(1) variables”. The fact that nominal interest rates

cannot be negative and other considerations are strong arguments against interest rates being /(1)

" Ait-Sahalia (1996) found the short interest rates to behave as an I(1) process within the band [4%. 18%] and a
theoretical model in which interest rates are similar to a random walk is given by DenHaan (1993).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

forever. Nevertheless, interest rates may very well be I(1) in a particular sample period. Whenever
this is the case, modelling interest rates as I(1) is equivalent to invoking asymptotic results to
finite samples. The parallel is that the sample in which interest rates behaved as I'(1) need to be
long enough for asymptotic results of the /(1) model to be valid, and that any constraint that
may prevent interest rates from being /(1) has had no relevance in the sample period analyzed.

See Pagan, Hall, and Martin (1996) for another argument on this matter.

2.5.3. Data

The term structure data were extracted from the Bliss data® that are interpolated by the McCul-
loch cubic-spline method. This is the same technique as the one used to create the widely used
data sets from McCulloch (1990) and McCulloch and Kwon (1993). However the Bliss data differs
by not being tax adjusted.

The data used in the empirical analysis are monthly US zero-coupon yields with maturities
of 1. 3. 6. 9. 12, 60. and 84 months? within the sample period 1970:1 - 1995:12. The yields are
stacked in the vector X, ordered such that the first element in X, is the 1-month interest rate at

time t. The most general model can be expressed as

k-1
AX, = a(t)3(t) Xeor + D TAXe, + p(t) + 2.

=1

where a(t). 3(¢) and u(t) are piecewise constant with two change points: in 1979:10 and in 1982:10.
To avoid a deterministic trend in the yields, the constant is restricted by u(t) = a(¢t)p(t). so the

model can be rewritten as

k-1
AX, = a(t)8(t)" X, + > TidXe—: + <.

=1

“The data were provided to me by David Marshall, (see Bekaert, Hodrick, and Marshall (1997)). Interested
parties are referred to Robert R. Bliss: rblissagsbalum.uchicago.edu.

“Longer maturities were not selected because precise estimate of these are difficult to obtain by interpolation
techniques. See Bliss (1997)
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where X;’ = (X/.1) and 3% = (B(t)’, p(t)).

We may normalize the cointegration relations by

( .311,1 312,1 31r,z \
-1 0 0
0] -1
3(t)* = ) . . (2.5.2)
0 -1
\ Pie P pr,t/

Since these relations define the stationary relations. the long-run implications of the expectations
hypothesis — that the spreads y,.,. — y;. are stationary - can be formulated as the parameter
restrictions 3;, , =--- = 3;,., = 1.

The individual cointegration relations in equation (2.5.2) can be written as

bnty1,t —Ynie + Pne- 1 =3.6.9.12.60.84. (2.5.3)

where the maturities n = 3. 6. 9. 12, 60. 84 and b, correspond to i = 1..... r and 3,;, in
equation (2.5.2). The Granger representation shows that E(b, y1.t — yn,e + Pn.,) =0. so p,,, can

be interpreted as the estimated term premia when b,,, is set to unity.

2.5.4. Estimation Results

The lag length was set to two using Akaike’s and Hannan-Quinn’s information criteria. The
cointegration rank is set at six (r = 6) as predicted by the expectations hypothesis and as the
existing literature has supported. No formal test was applied for this selection.

Table 2.5.1 shows that the covariance matrix clearly differs between the three subsamples. The

ariance estimates from the three subsamples are given in Table 2.5.2.
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AXe —a(t)87(t) X, — 18X ~ N(0.9(2))

Model max log L{a(t). 3°(t).[1.Q(2))
Mo: Q(t) 2009.25
.\Ilt Ql = Q3 1824.94

.\Iz: Ql = Qz = Q:;

1631.77

Degrees of freedom

295
270

239

LR(M; M)

(p-value)

368.61
(0.0000)
754.96
(0.0000)

Table 2.5.1: The maximum value of the likelihood function for the model with changing reduced

rank parameters. and changing covariance €,.

The Estimated Covariance Matrices. Q(¢)

1970:3-1979:9

1979:10-1982:10

1982:11-1995:12

Q3 =

( 030

0.28
0.25
0.22
0.14
0.10
\ 0.09

( 1.75

1.68
1.531
1.28
0.92
0.63
0.54

( 0.10
0.09
0.08
0.07
0.07
0.06

\ 0.05

0.28
0.27
0.25
0.22
0.15
0.11
0.10

1.68
1.70
1.58
1.33
097
0.68
0.59

0.09
0.09
0.09
0.09
0.09
0.08
0.07

0.25
0.25
0.25
0.23
0.17
0.12
0.11

1.51
1.38
1.50
1.30
0.97
0.69
0.61

0.08
0.09
0.10
0.11
0.11
0.10
0.09

0.22
0.22
0.23
0.23
0.17
0.13
0.11

1.28
1.33
1.30
1.18
0.90
0.65
0.57

0.07
0.09
0.11
0.12
0.12
0.11
0.11

0.14
0.15
0.17
0.17
0.15
0.12
0.11

0.92
0.97
0.97
0.90
0.72
0.54
0.48

0.07
0.09
0.11
0.12
0.13
0.13
0.12

0.09
0.10
0.11
0.11
0.11
0.09
0.08

0.54
0.59
0.61
0.57
0.48
0.39
0.35

0.05
0.07
0.09
0.11
0.12
0.13
0.12

Table 2.5.2: The estimated covariance matrices, 2;, j

model.
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It is not surprising that the variance of interest rates (see Table 2.5.2) were much higher in
the 1979-1982 subsample when the Fed did not target interest rates directly. One conclusion
from Table 2.5.1 is that the difference between the variance of interest rates in the first and third
subsample is significant. From Table 2.5.2 it can be seen that the major difference between the
covariance matrix in the first and last subsample is the reduced volatility of the interest rates with
shorter maturities. This phenomenon may be explained by the less frequent adjustments of the
Fed's target of the Fed’s fund rate in the most recent sample, along with fact that the Fed now
publicly announces what their target is.

Six models with different parameter restrictions were estimated!?. The estimations results are
given in Tables 2.5.3 and 2.5.4.

Model 1 in Table 2.5.3 is the most general model, where the parameters are left unrestricted.

This model can be represented by the equation

A.x’g = C!(t) [,B(t)I.Yg_[ + p(t)] + rlA.Yg_l + 2. t=1..... T.

e~ N(0.Q()).

(K]

where the parameters are constant within each subsample. i.e. a(t) = a; for t < 1979:09. a(t) = a2
for 1979:10 < ¢ < 1982:10 and a(t) = ag for ¢ > 1982:11. and similarly for 3(t). p(¢t) and Q(t).
The long-run implication of the expectations hypothesis requires b, = 1 for n = 3. 6. 9. 12. 60.
and 84. The point estimates differ from unity by being systematically too small in the two first
subsamples and too large in the last subsample.

In Model 2 the long-run implication of the expectations hypothesis is imposed as the parameter
restriction b, = 1 for all n in all subsamples, whereas term premia (p,,) adjustment coefficients

(a,. i =1,2.3) as well as the covariance may differ across subsamples. This model can be written

YThe empirical analysis was performed in Gauss. Code and documentation can be obtained by contacting the
author.
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1: Unrestricted Change Model 2log L #f LR p-value
a(t), 3(t), p(t), Q(t) 4018.49 295 - -

n 3 6 9 12 60 84
1970:3-1979:9 bn 0.9831 0.9767 0.9162 0.7473 0.6154 0.5947

P 0.3634 0.6356 1.1666  2.4113  3.45317  3.6640
1979:10-1982:10 b, 0.9234 0.8455 0.7716 0.7378 0.7179 0.6765
P 1.4726 2.5635 3.5156  3.8391 3.9931 4.4702
1982:11-1995:12 bn 1.0746 1.1391 1.2596 1.5328 1.7390 1.7989
P -0.2384 -0.4607 -0.9011 -2.0401 -2.8354 -3.0585

2: Expectations Hypothesis 2log L #f LR p-value
a(t), 3(t) = 3.p(t), () 3989.58 277 2891 0.0495
n 3 6 9 12 60 84

1970:3-1979:9 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
p.  0.2620 0.4935 0.6592  0.8935 1.1473 1.2357
1979:10-1982:10 b, 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
p.  0.6309 0.8628 09917 0.9370 0.8637 0.8800
1982:11-1995:12 b, 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
p, 0.2106 0.3694 0.6307 1.0520 1.3919  1.5010

3: Constant a & Expectations Hypothesis | 2log L #f LR p-value
a(t) = as(t), 3(t) = 3. p(t), Q) 3978.44 265  40.05  0.1038
n 3 6 9 12 60 84

1970:3-1979:9 bn 1.0000 1.0060 1.0000 1.0000 1.0000 1.0000
P 0.2644 0.4999 0.6748  0.9221 1.1861 1.2753

1979:10-1982:10  bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
p. 0.6529 0.9089 1.0495 0.9896 0.9065 0.9281
1982:11-1995:12 b, 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Pn 0.2123 0.3753 0.6323 1.1248 1.5229 1.6487
4: Constant a & 3 & EH. p(t) may change. | 2log L #f LR p-value
a(t) = a. 3(t) = 3. p(t). Qt) 3784.01 199 23448  0.0000
n 3 6 9 12 60 84

1970:3-1979:9 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
p. 0.2701 0.5061 0.6798  0.9381 1.2343  1.3332
1979:10-1982:10 b, 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Pn 0.5850 0.8015 0.9598 1.2261 1.4309  1.5107
1982:11-1995:12  bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Pn 0.2182 0.3826 0.6621 1.1599 1.5995  1.7405

Table 2.5.3: Estimation results: For each model we report the maximum value of the likelihood
function, the model’s degrees of freedom and the test statistic (tested against the most general
model) with the correspondings p-value. The cointegration parameters b, and term premia p,,
from the cointegration relations b,y — yn, + p, are reported for each model and subsample.
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AX, = a(t)[B X1 +p(t)] +T1AX 1+ t=1.....T.

e~ N(0.Q(t).

where J has the structure required by the long-run implications. The likelihood ratio test of Model
2 against Model 1, has a p-value of 4.95%. This shows that there is not strong evidence against
the long-run implication once structural changes in the parameters are accounted for.

Model 3 is a more parsimonious model where in addition to the restrictions in Model 2. the
adjustment coefficients are required to span the same subspace. a(t) = a-o(t). where o(t) is a full

rank r x r matrix. This model can be written as

AX, = C!G)(t) [»BIXg_[ + p(t)] +DiAX i +2. t=1..... T.

[

.~ N(0.Q(t)).

The restriction implies that the orthogonal complement to « is constant, i.e. a,(t) = a,. The
different strength of the adjustments between the three subsamples are expressed in terms of the
matrix oft).

Recall the Granger representation from equations (2.4.1) and (2.4.2)., and here extended with

a third subsample:

t
X = CY a+0(1). t=1..... T;.
1=1
t T
Xe = D Y s+DICY &i+0,(1) t=T+1.....Ts.
i=T+1 i=1
t T, T
Xe = E Y «+ETD Y <« +EIDICY = +0,(1).
i=Ta+1 1=T;+1 =1
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An implication of the constancy of a; and 3 and I'y is that the loading matrix is constant. i.e.
C=D=FE=3, (a, T3 J_)—l a’, . This simplifies the Granger representation to a single equation

given by

li
—

t
Xe=C) «+0,(1). ¢

=1
using the fact that CTC = C.

The term o', Zf=1 ; is called the common stochastic trend in X,. because it describes the
random walk element of X,, and C&. defines how the stochastic trend is loaded into the process
X:. (note Ca a’, = C). Thus the non-rejection of Model 3 (a p-value of 10.38% when tested
against Model 1) can be interpreted as follows: The long-run implications are consistent with the
data and we cannot reject that the common stochastic trend has been a constant linear combination
of ;. and we cannot reject that the loading of the common stochastic trend has been constant.
The non-constancy of the common stochastic trend comes from the changing variance of <,.

The last model in Table 2.5.3. Model 4, can be expressed as

AX: = a[F X1 +p(t)] +T1AX oy +5. t=1..... T.

e~ N©.9(1).

In this model the adjustment coefficients have the same strength in the three subsamples. This is
equivalent to the additional restriction: o(t) = o on Model 3. This model is clearly inconsistent
with the term structure data. The fact that the strength of the adjustments are non-constant is
not puzzling. since the changes appear along with changes in volatility and term premia.

Thus. we find the term structure to have had structural changes in the covariance Q(¢) and
the term premia p(t) along with changes in the strength of the adjustments to dis-equilibria in the
cointegration relations. However fundamentals such as the common stochastic trend and stable
relationships between interest rates have remained relatively unchanged in the sample analyzed.

These findings are consistent with many of the suggestions that have been offered to explain
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the rejection of the expectations hypothesis. The monetary changes in the fall of 1979 and the fall
of 1982 had an important impact on the stochastic properties of interest rates. If the structural
changes are not accounted for, the result can be incorrect inference, and a possible rejection of a
true hypothesis, as was suggested by Hall. Anderson, and Granger (1992) and Engsted and Tang-
gaard (1994). The suggestion by Tzavalis and Wickens (1997) of a time varying term premium, is
also consistent with the results, since we find p(t) to vary as the volatility of interest rates changes.
Finally. my finding of a changing variance is likely to distort hypothesis testing if not accounted

for. which is similar to the volatility effect found by Pagan, Hall, and Martin (1996).

5: No Structural Changes 2log L #f LR p-value
a(ty=a, 3(t) =3, p(t) =p. Q) =Q 2852 131 - -
n 3 6 9 12 60 84
1970:3-1995:12 b, 1.0390 1.0417 1.0520 1.0529 1.0239 1.0191
p, 0.0011 0.1680 0.2951 0.6209 1.14v8 1.2875
6: No Changes & Expectations Hypothesis | 2log L #f LR p-value
a(t)=a. 3(t) = Hé. p(t) = p. Q)= 2825 125 26.84 0.0002
n 3 6 9 12 60 84
1970:3-1995:12 b, 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
pn 02719 0.437! 0.6561 0.9888 1.3148 1.4215

Table 2.5.4: Estimation results. Testing the expectations hypothesis in the cointegrated VAR
without structural changes. Note that the p-value is invalid because model 5 is strongly rejected
against model 1.

The fifth and sixth models in Table 2.5.4 replicate previous empirical studies of the US term
structure, by having constant parameters. Mlodel 5 is the unrestricted model (with constant
parameters) and Model 6 is the submodel in which the long-run implication of the expectations
hypothesis is imposed. A test of Model 6 against Model 5 would have lead to a weak rejection of
the expectations hypothesis, exactly as previous studies have concluded. Of course. this inference
is invalid because model 3 is inconsistent with the data. The LR test statistic of Model 3 against
Model 1 is 1166. Its distribution is asymptotically x? with 164 degrees of freedom. and is therefore

clearly rejected.
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2.6. Conclusion

This paper shows how structural changes in cointegrated processes can be formulated in a uni-
fied framework, using the familiar vector autoregressive model. It is possible to formulate and
test various structural changes as simple parameter restrictions in this framework. Moreover, the
parameters can be estimated under these restrictions with the new generalized reduced rank regres-
sion technique. This technique is also applicable to estimation problems unrelated to structural
changes.

[ derived the likelihood ratio test for structural changes occurring at known points in time, and
showed that it is asymptotically x2. Moreover. it was shown how hypotheses can be tested, when
the maintained hypothesis is presence of structural changes. [ derived the asymptotic distributions
of the parameter estimates and likelihood ratio tests. Similar to the standard model without struc-
tural changes. the estimate of the cointegration relations is super-consistent and asymptotically
mixed Gaussian, and the LR statistic is asymptotically x2.

This combination of cointegration and structural changes may provide a fruitful framework
for many economic questions of interest. In this paper I analyzed the US term structure and
found evidence of structural changes that coincide with the Fed's policy changes in September
1979 and October 1982. Contrary to previous studies (see Hall. Anderson. and Granger (1992).
Engsted and Tanggaard (1994), or Pagan, Hall. and Martin (1996)) I cannot reject the long-run
implications of the expectations hypothesis, once these structural changes are accounted for. In
fact. a parsimonious model is consistent with the data. This model has a different covariance
structure in the three monetary regimes, and along with changes in the covariance matrix. only
the term premia and the strength of adjustment coefficients changes.

In this paper, the cointegration rank was taken as given. Although this is reasonable when
interest rates are analyzed. this need not always be the case. A formal test to determine the rank

of cointegrated processes is derived in Chapter 4..
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Appendix B: Proofs

B.1. Algebraic Treatment of the Reduced Rank Regression

Before I give the proofs of Theorem 2.3.1 I derive some intermediate results. The following lemma

is a consequence of Poincaré’s theorem, however, a direct proof is presented here.

Lemma B.1. The function g(y) = |y’Ay| /|y'y| where y is a p x r matrix, A = diag(A1.....Ap)
and A\; > Ag > --- 2 Ap > 0 has maximum value []._, A\: which is attained with y equal to the

first r unit vectors. that is y = (I.Orxp_r)’.

Proof. Let J be an index set J C {1..... p} of cardinality r. and define the r x r matrices y

and Ay by ys = {yijlies j=1..rand Ay = {1\;’)},"_,'6_/. Soif p=3.r=2and J = {1.2} we would

yu Y2 A O
have y; = and Ay =
Y21 Y22 0 X
Next. let D7 denote the set of all subsets of {1..... p} containing exactly r different elements

(cardinality r). Below, I prove that

Ayl = Y WAyl = Y hysl e = 3 lusi? Mies e (B.1)
Jezy Jezy Jezy
So g(y) = |¥'Ayl/ ¥yl = Zjea; lys12 TicsAi/ Z_,GD; lys|® is a convex combination over the

elements in Dy with values given by [I,e sA;. with the largest element being ["[:=1 A; corresponding
toJ = {L..... r}. This value can be obtained with § = (/;.0rxp-,)’ which therefore maximizes

the function g(y).
The identity (B.1) is proved as follows. The second and third equality follows trivially from

IAB| = |A!|B| for matrices of proper dimensions, whereas the first equality is showed by induction
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below. The equality trivially holds for r = 1 or p = r. So the scheme

p\r| 123|414
1 |V |- —-1|-
2 | VIV |—-]-
3 I V|?iv| -
4 |V ?21 2

shows that the equality can be proven by showing it holds for cell (p.r) when it is assume that it
holds for cell (p — 1.7 — 1), say assumption (Al), and for cell (p — 1.r). say assumption (A2).
Define A = diag(A;..... Ap—1) and consider first the case where the last row of y is a zero-row

(Ypr-.--. Ypr) = (0..... 0). Define in this case § = {y;;}i=1....p—1, that is y without the zero-row.

By applying assumption (A2) we have the relation

WAyl = 1§AGl= ) 1wyl Thes
JeDy_,
= Z lWousl - Mieshi+ D Woysl-Wiesdhi= D lwjys] - MiesAs
JEDp.peJ JeTy.ped JET;
=0
which proves the lemma in this case.
Next assume that (yp1.-.-. Ypr) # 0, and choose a full rank r xr-matrix Q. so that (yp. . .. . Ypr)Q

=(0..... 0.1) Then define the p — 1 x r — 1 matrix ? as the first r — 1 columns of §Q. Then it

holds that

2., _ - Or—ixr—1 O
QI [¥'Ayl = [QFAIQ +
0 Ap
= IQ’g'Z\gQI + |z'Az| Ap. (B.2)
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Applying assumption (A2) on the first term of (B.2) we get

lQ7AsQ| =10 3 1Asisl=1QF ¥ Al (B.3)

Jezr_, JETT.ped

Note that for J € D;7| we have that
. 7 0 -
|2} = = ly;Ql. and X, |A4] =151

where J = {J U {p}} € Dy So applying assumption (Al) to the second term of (B.2) we have

lz"z—\..;

M=2=1QR DT WAl (BA)
Jen, ' pes

Combining the identities (B.2), (B.3), and (B.4) we have shown

QP AYl =1QF D iwiAsws+IQF Y WAl =1Q2 Y IiAsyll

Jernr.pgJ Jeor.peJ JET;

which completes the proof. |
In the proof for Lemma B.1 we obtained a representation for |y’Ay| which we formulate as a

separate corollary.

Corollary B.2. Let \ be a real p x p diagonal matrix. and y a real p x r matrix. where r < p.

Then with the definitions above. we have that

WAyl = Y hdsusl = Y Wiyl Mesdi = Y sl Theshi.
JET; JED; Jez;

Lemma B.3. Let r be a p x r matrix. M and N be p x p symmetric matrices. M positive

semi-definite and N positive definite.
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The function f(r) = |£’Mz|/|t’Nz| has [];_, A: as its maximum with is obtained for r =

from the eigenvalue problem [AN — M| = 0.

Proof. The matrix (N‘é M N'é) is symmetric positive semi-definite, hence we can diagonalize
it as N=IMN"T = QAQ’ where QQ’ = I. A =diag(A;,....Ap) and A\; > A2 > --- > A, > 0. By
defining V = VN-1Q and y = V~!r. we have that |2/Mz| /|’ Nz| = |y'Ay]/ |y'y|. According to
Lemma B.1 this is maximized by y = (I..0)’. so f(z) is maximized by £ = Vg = ,\/"ng. 8
Proof of Theorem 2.3.1.

The likelihood function is given by

T
L(a.3.¥.Q) = H ((27)? !Ql)—g
t=1

1
X exp (“‘3(20! -al'Z, - ‘I’Zzz)'Q-K(ZOt -ad'Zy, — ‘I’Zzz)> .

The estimate of the parameters are found by maximization of the likelihood function, or equiv-

alently by maximization of the logarithm of the likelihood function

2| N

logL{a.3.¥.Q) = —=|9 - =log(27)P

T
Y (Zo - a8 Zy — WZo ) QT (Zow ~ @' 21, — W Z2).
t=1

o) r—

The maximization is done in three steps. First. we maximize with respect to ¥ taking a and
3 as given. then with respect to a and € taking 3 as given. and finally with respect to 3.
The estimate of ¥, given a and 3. is found by regressing (Zo: — a3'Z;,) on Za,. with the

Gaussian error term. the estimate is found by OLS

C(a.3) = Mup M5! — a3 MMy (B.5)
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where M;; =T! zzT=1 VATYA }:- The concentrated likelihood function is given by

log L(a.3.Q2) = —£|Ql - glog(i’n’)" -

[T

T
> _(Rae = ad'Ru)' 2 (Rt — a8’ Rue).
t=1

where the auxiliary residuals (Zo, and Z;, corrected for Z5,) are given by Ro, = Zo; — ;\[02;\[2_21221
and R“ = Z“ - .‘\[121‘[2-2122!‘

Taking 3 as given, the estimates of a and Q are given by

&(3) = Saud(3Sud)™! (B.6)

Q3) = Soo — S018(3'S113)"'3 S1o. (B.7)

again using that the errors are Gaussian.

What remains is to maximize the concentrated likelihood function with respect to 3. Since

T
T='Y (Ro — &(8)3 Ru) (A3) ™" (Rot — &(3)3'Rue) = I.

t=1

the concentrated likelihood is given by
R - 1 R -¥
£(3) = (2 1000)) " exp (~3Tp) = (e |20n]) 7

So maximizing the likelihood function is equivalent to minimizing

| |3'(S11 — S10S50 So1)3|
13'S1.1 3 '

19(3)] = |So0 — So13(3'$113) ™' 3 S0l = |Soo

which is solved by choosing the r smallest eigenvalues of {S1,p — (511 — S10S5" So1)]. or be defining

A = 1 — p. choosing the r largest eigenvalues of [S1,p — SloSJOlSoll. which is identical to solve
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3'(S10S5, S01)3 . N
max I(—ll-;g-l)l—nf—l()i—' By Lemma B.3 the estimator is given by

where A, and #; are the eigenvalues and eigenvectors to the problem
[AS11 — S10550 So1| = 0.
ordered such that Ay > Ao > ... > ;\p, and we find
12(3)] = |Sool g(l - X).

Since the eigenvectors are normalized by (o;..... tp) S (t..... vp) = I. we have 3,5113 = 1.
such that (B.6) and (B.7) reduces to (2.3.3) and (2.3.4). By inserting these estimates into (B.3)

we find (2.3.5). ]

B.2. Algebraic Treatment of the Generalized Reduced Rank Regression

Before we can formulate the general estimation result we need some additional notation. Define
Zo = (201 ..... Zo'r), Z[ = (Zu ..... ZlT)- 22 = (221 ..... Zz'r). and F = (51 ..... :'T). so that

Model 2.2.3 can be expressed as

Zo = AB,Zl +C2Z,+ E. (BS)
Next define
Zig2 = ((Z21B.Z;) = I)).
Z,4. = (Z1= AYKp, r.
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where K, , is the commutation matrix, uniquely defined by K, .vec(B) = vec(B’) for any p; xr
matrix B. Thus K, is a p;r x p;7 matrix consisting of zeros and ones.

Finally let ¢ = vec(s;..... 1) and set

¥ = var(e),

which is block diagonal under Assumption 2.2.1. The p x p matrices in the diagonal of X are given

by Q(¢). t =1..... T. formally Ep(t—l)-f-i.p(t—l)«‘rj = Qi'J(t) for . j = 1..... pand t = 1..... T.

Lemma B.4. With the definitions above, we have the relations:

M=

Z, 5724 = (At Ax 2,.2;,]. (B.9)

3

-
1

vec (Z1:(Zoe — CZ2,)'Qt) "V A) . (B.10)

M-

Z X vec(Zo - C2Zy) =
1

~

T ’ r ’ 7]
ZipoS gy = Y BouiiB B2l Q). (B.11)
t=1 ZQgZ{lB Z-ngéz
T
ZipaT 7 vec(Zo) = D vec(t)T'Za(Z1,B.Z5,)) - (B.12)

t=1

If {c,} is i.i.d. Gaussian with covariance matrix €. the expressions simplify to:

1'42_121‘4 = T [.4’9-144 e .“Il[] .
'1_,‘2_1\'%(20 ~CZ2) = Tvec ((."[10 - .\[ch’)Q_lA) .
; 1 Bli‘luB B’.“Ilz 1
1822— Z132 = T p Q_

.*\[213 ."[22
Tvec (Q—l(."[o[B. ;\[02)) .

i

Z,IB22—1V8C (ZQ)
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Proof. The identity

ZiAZ7 24 = K, (219 A)ENZ] % A)Kp, -
T
= Krp, 3 _(Z1e% A1) N2, % A)K,, -
t=1

T
= Krp, 3 (Z1e% A'Qt) 1) (2], % A)Kp, -

t=1

T
= Krp 3 (212, AQ) T A K,

t=1

T
= Y (Ao tAx Zn2y,).
t=1

which proves (B.9). We used that Z}, is a column vector, and that we can write Q(t)~! = 1:cQ(¢)!
and the formula (M; x Mo)(M3 % M) = (M AL % M\ L) for matrices where the product A Af;
and M5 M, are well defined.

Next consider

T
Z\ S 'vec(Zo — CZa) = Kop 3 (Z1e % A)Q() ™ (Zor — CZe)

t=1

T
= Kop D (Zie = A'Qt) 7 )vec(Zor — CZx)
t,r=1
T
= Krp, Z vec(A'Q(t) " (Zor — CZat) Z3,)
t,r=1
T
= Y vec(Zi(Zo — CZa:)'t) ' A) .

t=1

which proves (B.10). Equations (B.11) and (B.12) are proven similarly.
In the situation where {z,} is i.i.d.. we have Q(t)~' = Q~!, which proves the last four

equations.
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Proof of Theorem 2.3.2. Applying the vec operation to equation (B.8) yields the equation

vec(Zo) = (Z1B x Ip)vec(A) + (25 % Ip)vec(C) + ¢

(ZB.Z}) % I)] vec(A.C) + <

= Z;1g:Gvr +¢.

For fixed values of B and ¥ this is a restricted GLS problem with the well-known solution given

by

vec(A.C) = G [G'Z, 5257 Z152G] ™' G'Z 5,5 vec (Zo) -

which by Lemma B.4 simplifies to (2.3.6).

Similarly for fixed 4. C. and ¥. we have the equation

vec(Zg — CZ2) = vec(AB'Z) +=
= (Z] % A)vec(B’) + =
= (2] % A)K,, rvec(B) + ¢

= Zjysvec(B) +=.
This is also a restricted GLS problem. with the solution given by
vec(B) = H [H'Z| \.$™'Z1 4 H] ™' H'Z, \S 'vec(Zo — CZa).

which by Lemma B.4 reduces to (2.3.7). @
Proof of Corollary 2.3.3. Follows from Theorem 2.3.2 and Lemma B.4. B
Proof of Corollary 2.3.4. From Theorem 2.3.1, we obtain the equations for C and Q. Rather

that handling the remaining estimation for A and B as a GLS problem we can obtain the likelihood
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equations directly. The concentrated log-likelihood function is (apart from a constant) given by
T —~1 ’ ’ ’ 7
logL(A.B) = -Str {Q" (So0 — AB'S10 + AB’S11BA’ — Sq1BA")}
holding 2 fixed. So the derivatives of A and B in the directions a and b are given by

Dalog L(A.B)(a) = Ttr{Q ' (So1 — AB'Sy;) Ba'}
= T [u{Q 'So1Ba’} — tr {[,A(B'S1B)a’}]

= Tvec(a) [(B' x Q1) vec(So1) — (B'S1 B =« I,) vec(A)] .
and

Dplog L(A.B)(b) = Ttr{Q ' (So1 — AB'S11)bA'}
= Ttr {A'Q"" (So, — AB'S11) b}

= Tvec(b)' [(A’ % S1o) vec (27') — (A'Q71A = S1y) vec(B)] .

using Theorem 3 from Magnus and Neudecker (1988. Chapter 2). So equations (2.3.9) and (2.3.10)
are the first order conditions. Il

Proof of Corollary 2.3.5. The result follows directly from Theorem 2.3.1 and Corollary 2.3.4. B
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Chapter 3

Testing for Structural Changes in Cointegrating Relations'

Abstract

This paper derives likelihood-ratio based tests for a structural change in the coin-
tegrating relations. When the potential change point, 7. is known, the likelihood ratio
test. LRr(7). is shown to be asymptotically y2. Simulations show that the x?2 distri-
bution is a reasonably good approximation in small samples. except when a stable root
is “close™ to unity.

The case with an unknown change point can be handled by statistics based on the
sequence of tests: LRyp(7). T = Tg.... .T;. Tests of this kind include the SupQ test.
the MeanQ test, and the ExpQ test. Andrews and Ploberger (1994) showed that the
MeanQ and ExpQ tests belong to a class of optimal tests in a setting with stationary
variables. In this setting with (1) variables, simulations show that these tests only
dominate the SupQ test against alternatives in the directions where the cointegration
parameters are T!/?-consistent. In the directions where the cointegration parameters

are T-consistent, none of the tests clearly dominates the others.

TThis chapter has benefitted from many valuable comments from James D. Hamilton. All errors remain my
responsibility. I thank Kevin Sheppard for providing computer power.
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3.1. Introduction

It is now well known that structural changes affect tests to determine the extent of I(0)- and I(1)-
ness in time series, (see Perron (1990), Campos. Ericsson, and Hendry (1996), and Gregory and
B. E. Hansen (1996)). Because statistical inference and economic interpretations are associated
with variables or relations being I(0) or I(1), it is particularly important to model and test for
structural changes in I(1) processes. For an ongoing discussion of this issue, see Nelson and Plosser
(1982), Perron (1989). Zivot and Andrews (1992) and Lumsdaine and Papell (1997).

This paper investigates structural changes in the cointegrating relations formulated in the vec-
tor autoregressive model of Johansen (1988). This framework is convenient because the maximum
likelihood estimators are easily derived under both the null (no structural changes) as well as under
the alternative (a structural change at time 7). When the potential change point is taken as given,
the likelihood ratio test is shown to be asymptotically 2. When the change point is unknown. the
testing problem is nonstandard, and I consider the SupQ, MeanQ, and ExpQ statistics. which are
the likelihood ratio (LR) version of the tests proposed by B. E. Hansen (1992a), Andrews (1993),
and Andrews and Ploberger (1994).

A Monte Carlo study shows that the small sample distributions of these tests depends on
nuisance parameters. Another Monte Carlo experiment shows that the MeanQ and the ExpQ
tests have the best power properties against alternatives in the direction where the estimator of the
cointegration parameter is T'!/2-consistent. similar to the optimality these tests have been proved
to have in a setting with stationary regressors. (see Andrews and Ploberger (1994)). Surprisingly.
none of the tests seem to dominate the others against alternatives in the directions where the
estimator of the cointegration parameter is T-consistent.

The tests considered by Andrews (1993) and Andrews and Ploberger (1994) can be based on
either the Wald test (SupW, MeanW. and Exp\V), the Lagrange multiplier (L)M) test (SupF.
MeanF, and ExpF), or the likelihood ratio test, (SupQ, MeanQ, and ExpQ). B. E. Hansen (1992a)

derived the SupF and MeanF statistics to test for parameter constancy in cointegrated regressions,
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and Seo (1998) considered the SupF, MeanF, and ExpF statistics in the cointegrated VAR model.
A related test is the L test by Nyblom (1989), extended to linear models by B. E. Hansen (1992b),
to regressions with /(1) variables by B. E. Hansen (1992a), and to cointegrated processes by
Quintos (1997), Kuo (1998), and H. Hansen and Johansen (1999). H. Hansen and Johansen
(1999) also proposed tests based on recursive estimation of eigenvalues that are associated with
cointegration parameters. This approach has the advantage of reducing the dimension of the
testing problem, and is well suited for graphical presentation. as implemented in CATS in RATS.
(see H. Hansen and Juselius (1993)).

All of these tests have the same null hypothesis, (no parameter changes), but differ in their
alternative. The Sup-, Mean-, and Exp-statistics are designed to test against an alternative of
one structural change, whereas the alternative of the L test is that the vector of parameters is a
martingale.

The SupQ. MeanQ. and ExpQ statistics considered in this paper are similar to SupF. MeanF.
and ExpF test for changes in the cointegrating relations considered by Seo (1998)!. But the tests in
this paper differ by having power against both rotations/rescaling of the cointegration parameter
as well as actual changes of the cointegration space. although the power in the former case is quite
low when the sample size is small. In Seo (1998) the statistics are accompanied by tables with
(asymptotic) critical values. One of the conclusions in this paper is that the tests have poor small
sample properties for values of nuisance parameters that one is likely to encounter in economic
time series. So in practice one should account for this bias rather than using the asymptotic tables
alone. Based on the simulations, I argue that the MeanQ test is the best test.

This paper is organized as follows. In Section 2, the statistical model is presented and the LR
test for a known change point is derived and shown to have an asymptotic x? distribution. In

Section 3 we evaluate the small sample properties with Monte Carlo simulations. Power properties

! One of the motivations for using the LM based tests was a claim that the LR test is cumbersome to compute,
(see Seo (1998) page 226). However, as shown in the next section, the LR test for changes in the cointegrating
relations is casy to compute, so in practice this is not an obstacle.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



are studied in Section 4 and Section 5 contains concluding remarks. All proofs are contained in

the appendix.

3.2. The Statistical Model

The extended model to be estimated is given by

k—1
AX, =aB(t)Xe-1+ Y TAX i +®Di+5. t=1....T

=1

where .X; has dimension p. the error term ¢, is a sequence of i.i.d. Gaussian variables with mean

zero and variance Q. and the only modification to the standard model is that

where a. J,. and 3, are p x r matrices with full column rank.

We shall work under the null hypothesis that there are no structural changes in the process
(3, = 3, = 3) and assume that the process is I(1). Specifically. we assume: (i) The characteristic
polynomial A(z) = I(1 — 2) —af'z - Z::x[ [i(1 — 2)z* has unit roots (|4(1)] = 0) and all other
roots are outside the unit circle: (i) The number of unit roots equals p — r.

\We define the orthogonal complements a; and 3, to be p x (p — r) matrices of full column
rank that satisfy a’, @ = 3 3 = 0. and note that the assumptions above ensure that o, '3, has

full rank, where T =1 — Zf;ll ;. (see Johansen (1996)).

3.2.1. Estimation

It is well known how to estimate the model without changes. The model is reformulated as Zg, =
0312“ +\I’Z2¢ + &, with the definitions Zo; = AlYt’ Zu = Xg_i. Z’_)g = (AX{_l e AXt’—k+l' Dg)l

and ¥ = ([;.... .Tx—;.®), and parameter estimates are found by solving the eigenvalue problem
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[AS1 — 51050"01 So1| = 0 where moment matrices and auxiliary residuals are defined by S;; =
LT RuR,. ij=0.1 = Zot — Mo Mz Z. My =LAST z.7,, i.j =012
T 2.t=1 R, e L1 =01, Roe = Zgy — ! Io2 M5, 2o,y and M;; = T Zt:l Z“Zj,, i, =0,1,2,

(see Johansen (1996)). The generalized model with structural changes in the cointegrating relations

can be estimated with the same technique. The model is rewritten as

k-1
AX: = aBilucnXeo1 +0B3lisny Xeo1 + Y DiAXe_i + 8Dy + <
=1
: k—1
= a(81.83)Zu+)Y TAXi— +OD, + <. (3.2.1)

=1

where [ ) are indicator functions and 2 = (He<ryXi{—1:Lu>r)X¢—1)". In the compact form the
model is given by Zo, = aB’'Zy, + WZ, + ¢;. where B = (8;.35) .

The maximum likelihood estimators for this model are also obtained by solving an eigenvalue
problem. Define the moment matrices AMy; = & S0, Z1,Z,. and Ao = LS 224, and
the auxiliary residuals }_?Og = Rq. fln =2 1t — .11'112;\.[2‘;22, and the moment matrices of these

residuals as 5.',", = 71: Zszl E:R;z, l] =0.1.

Theorem 3.2.1. The maximum likelihood estimators of the model 3.2.1 are given by

B = (&.....%.) (3.2.2)
a = SuB (3.2.3)
Q = Spo—aa’ (3.2.4)
¥ = MplMy' - aB A2 M5. (3.2.5)
where (%,. ... .,) are the eigenvectors corresponding to the r largest eigenvalues ;. ... .\, of the

eigenvalue problem

I/\Su bt 51030—01501[ = 0
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The maximum value of the likelihood function is given by
L72T(a B.¥.Q) = (27e)? 1500l [J(1 - N.).
=1

A proof of the theorem can be found in Johansen (1988).
This enables us to get a simple expression for the likelihood ratio test of the hypothesis of a
constant model. The first theorem is applicable in a situation where a particular value for the

cointegrating relations needs to be tested.

Theorem 3.2.2. The likelihood ratio test of 3, = B8, = 3, where 3, is a known matrix is

asymptotically x? with 2pr — r? degrees of freedom.

In the more general case where no particular value for 3 is given, the following theorem is

applicable.

Theorem 3.2.3. The LR(T) test of 3, = 3,. that is no structural change at time 7. is given by

LRr(t) = —2logQ =T [E log (1 - i,) — log (1 - ,\)]

=1

where A,. i = 1.... .r are the r largest eigenvalues of [AS11 — Si0Sg' So1| = 0. The asymptotic

distribution of the test is x? with pr degrees of freedom.

The proofs of the two theorems are given in the appendix.

3.3. Test for a Structural Change when the Potential Change Point is

Unknown

When the timing of a potential structural change is unknown. a more complicated situation arises,

and the testing problem is nonstandard.
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The situation with a structural change after the unknown time 7, can be expressed in two

ways. Either as

T-1
Bt)y=8+ b -1[t >
=1
where at most one of the parameters b;, ... ,br_; are non-zero, or as

3(t) =B +b -1t > 7l

where 7 is an unknown parameter, 1 < 7 < T. that is only identified under the alternative.
Problems of this nature have been analyzed by Andrews (1993). Andrews and Ploberger (1994),
and B. E. Hansen (1996). The approach by Andrews and Ploberger (1994) is semi-Bayesian in
the sense that it is based on a weighting function (prior), J(p). over the possible change points,
expressed as a fraction of the sample size, p = 7/T. For example, the uniform distribution on the
interval [7o.7]. 0 < 79 < m; < 1. where 79 = (7T} (71 = [7T]) corresponds to the smallest
(largest) possible change point. Andrews and Ploberger show that the class of optimal tests is

given by
Erp-Lr.=(1+ c)“’”/ exp (%ﬁ[np(p)) dJ(p). c € (0.x),
To ~ e

where L1(p) is either the Wald, Lagrange multiplier, or the likelihood ratio test, for a structural
change at 7 = [pT]. The parameter ¢ denotes how much weight is given to alternatives near the

null. and g denotes the dimension of parameter space for the change parameter. (in this setting

q = pr).

The limits for ¢ — 0 and ¢ — oc (with suitable normalization) are given by

MeanLT = li_x.r(l)‘Z(E.rp-ch -1)/c =/ Lr(p)dJ(p).
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the “average Lt", and
2 T
ExpLr = lim log((1 + )2 Exp-Lre) =log( |  exp(Lz(p)/2)d(p)
To
the “exponential average Lt”. It is worthwhile to notice that the Sup-test,

Sup-Lt = sup Lr(p).

RoLpST,y

does not belong to this class of optimal tests, as was pointed cut by Andrews and Ploberger (1994).
However, since the conditions that led to the class of optimal tests in Andrews and Ploberger (1994)
are not satisfied in this setting with /(1) variables. we cannot, a priori, exclude the Sup-Lt as an
optimal test.

Asymptotic distributions of these tests can be tabulated for various choices of 79 = 79/T and
71 = 71/T. that defines the fraction of the subsample for which change points are considered.
Often one can derive analytical expressions for the asymptotic distributions, e.g. H. Hansen and
Johansen (1999). and simulation can be based on these expressions, or one can simply generate
a large number of time series based on some choice of parameter values. provided that these
parameters are not nuisance parameters in the asymptotic distribution.

The 90%. 95%. and 99% quantile for the SupQ, MeanQ, and ExpQ statistics are tabulated in

Tables 3.4.3-3.4.3.

3.4. Size Properties of the Tests

To evaluate the small sample properties of the tests given in the previous section, we perform

a Monte Carlo experiment. The experiments were made with the computer package GAUSS,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



79

generating time-series based on the two-dimensional VAR(1) with one cointegrating relation,

\
AXy, -1 Xiioy 0.10 0.0
=a (1."‘1) + 2, e~ 1V(0. ) (3.4.1)

AXo, 1 Xo1 0.05 0.10
The generated time series had length n = 200, 300, 600, 1100 and initial value Xy = 0. When the
statistics were calculated, the first 100 observations were discarded, to reduce any influence the
choice of initial value may have. So test statistics were based on sample sizes of T = 100. 200.
500. and 1000. Simulations were made for a = 0.025. 0.050. 0.075. 0.100. 0.500. and 0.900. The
parameter a turns out be a nuisance parameter in our finite sample distributions. This parameter
has a one-to-one correspondence with the stable root of the process, za2. or the stable eigenvalue,

A2 = 1/z3. The characteristic polynomial of a process generated by equation (3.4.1) is given by
1 0O
1A(2) =1 (1-2)-a 1. -1l =1 -2)(1 = (1 - 2a)z).

which has the roots z; = 1 and 23 = 1/(1 — 2a). and hence, eigenvalues, A\; =1 and A; = (1 — 2a).
The I{1) conditions require that \; satisfies |As] < 1. or equivalently e € (0.1). which is the case
for all the simulated processes. The values of a in the experiment translates into A2 = 0.95. 0.90.
0.85. 0.80. 0.00 and —0.80.

Critical values for the test statistics, for sizes of 10%. 5%. and 1%, were based on 30,000
generated time series, for every pair of (a.T). The critical values are reported in Tables 3.4.1 and
3.4.2. along with the asymptotic (x?) critical values.

From Table 3.4.1 it can be seen that the size distortion is not alarming for a > 0.1 (A < 0.8).
However, for a close to zero (A2 close to one) the size distortion is increasing. The timing of
the change does not play a big role in the size distortions. The simulations based on a < 0.1. is
most relevant for empirical applications. In economic application, there are typicalily roots close

to one. besides the unit roots. and an eigenvalue A with real(A) > 0.8 is usually the case. Given
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Critical values, LR test for a change at [0.17.

a =0.1 (A2 =0.80)

a =05 (h2 =0.00)

a =09 (A2 = —-0.80)

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
100 6.1310 7.7738 11.4380 4.5527 5.9259 9.1743 13820 5.7268 8.8171
200 5.6326 7.2627 10.9768 4.5066 5.8870 9.0041 4.3712 5.7503 8.7474
500 5.1897 6.6460 10.0702 4.5827 5.9330 9.1439 1.4901 5.8196 9.0363
1000 4.9050 6.3918 9.8848 4.5930 3.9983 9.3027 4.5618 5.9231 9.2515
,\’(22) 4.6052 5.9915 9.2103 4.6032 5.9915 9.2103 4.6052 5.9915 9.2103

Critical values, LR test for a change at {0.25T}.
a =01 (% = 0.80) 2 =05 (A = 0.00) a =09 (A = —0.80)

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
100 6.0367 T7.8256 11.3381 4.7252 6.1182 9.4126 4.3328 5.9904 9.1717
200 5.4837 T7.1334 10.7639 4.6767 6.1242 9.4022 4.5078 5.8709 9.2257
500 4.9711 6.3831 9.9940 4.6139 6.0221 9.0431 4.3910 5.9890 9.0826
1000 4.7659 6.2427 9.5385 4.6004 35.9572 9.2823 4.5801 5.9579 9.2403
X?Q) 4.6052 3.9915 9.2103 4.6052 5.9915 9.2103 4.6032 3.9915 9.2103

Critical values, LRt test for a change at {0.507].
2 =01 (hz = 0.80) a2 =05 (A2 =0.00) a =09 (ha = —0.80)

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
100 6.0276 T7.7648 11.6975 1.77 6.1958 9.5186 4.6816 6.1226 9.2817
200 35.3005 6.8921 10.3191 46818 6.0812 9.3086¢ 4.6415 6.0237 9.3392
300 4.9586 6.4166 9.9239 1.6397 6.0287 9.2418 4.6022 59802 9.3219
1000 4.7438 6.1611 9.6193 1.3870 5.9603 9.0965 1.5894 6.0107 9.1048
N2, 16052 50015 9.2103 16052 59915 9.2103 16052 59915 9.2103

80

Table 3.4.1: Critical values for the likelihood ratio test for the case with p =2 and r = 1 based

on simulations with 50,000 replications.
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Critical values, LRt test for a change at [0.1T}.

2 =0.025 ()2 = 093) a =005 (A2 = 0.90) a=0075 (b = 0.85)

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
100 73128 9.1252 13.0206 6.8261 8.5235 12.4170 6.4392 8.0782 11.8322
200 7144 89082 12.7554 6.4603 8.1118 11.7736 5.9457 7.5266 11.2938
500 6.3492 8.0043 11.7104 5.7253 7.3641 11.0342 5.3829 7.0089 10.5388
1000 5.7294 7.3884 11.0951 35.2539 6.7995 10.3381 5.0351 6.5278 10.0011
\jsy 4.6052 5.9915 9.2103 4.6052 5.9913 9.2103 4.6052 5.9915 9.2103

Critical values, LRt test for a change at {0.257T.

2 =0.0325 (A2 = 0.93) 2 =0.05 (A2 = 0.90) 2 =0.075 (A2 = 0.85)

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
100 7.8987 9.7984 14.1787 7.1010 8.9106 12.9989 6.4892 8.30539 12.2069
200 7.2001 9.0525 13.2050 6.2066 7.9262 11.9992 5.6397 7.3271 11.1988
5300 6.0137 7.7950 11.4399 5.3503 6.9006 10.5298 5.0873 6.53353 10.0950
1000 5.3901 6.9856 10.57! 5.0298 6.5151 9.8866 4.8677 6.3484 9.7145
,\'(2.2) 4.6032 5.9915 9.2103 4.6052 5.9915 9.2103 14.6052 5.9915 9.2103

Critical values. LRt test for a change at [0.507T.

2 =0.025 (Ao = 0.93) 2 =0.05 (»2 = 0.90) 2=0075 ()2 = 0.83)

T 10% 5% 1% 10% 3% 1% 10% 5% 1%
100 8.0507 9.9911 144071 7.0272 8.8446 13.0488 6.3809 8.1670 12.1642
200 7.0967 8.9222 13.0676 6.0975 7.8120 11.6087 5.5795 7.2283 11.0295
500 5.8366 T7.4845 11.4435 5.2715 6.8329 10.6469 4.9657 6.4610 9.8895
1000 5.2490 6.9117 10.5112 4.9314 6.4484 9.877 4.8517 6.3053 9.6678
1\?2) 46052 5.9915 9.2103 46052 5.9915 9.2103 4.6052 5.9915 9.2103

Table 3.4.2: Critical values for the likelihood ratio test for the case with p = 2 and r = 1 based

on simulations with 50.000 replications.
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the observed size distortion one should use critical values based on the x2-distributions with care,
when the sample size is moderate. The test is somewhat conservative for small sample sizes, but
as an easy rule of thumb, one could used 1% x? critical values when the sample size is less than,
say, 250 and the largest stable eigenvalue is larger than 0.9, and use the 5% X2 critical values
otherwise. This would take care of some of the distortion and would lead to an actual size of
about 4% — 9%.

The size distortion for A close to unity, is somewhat in contrast to the observations made
by Gregory, Nason, and Watt (1996). They investigated the tests of B. E. Hansen (1992a), and
reported only moderate size distortion, but found power to be poor unless the stable eigenvalue is

small.

3.4.1. Size Distortion of the SupQ, MeanQ, and ExpQ tests

The critical values for the SupQ, MeanQ, and ExpQ were based on the same simulations as the
ones made for the LRr(p) test. although only for @ = 0.1. 0.5, and 0.9. The critical values are

reported in Tables 3.4.3-3.4.5
The size distortions for the SupQ. MeanQ, and ExpQ statistics are similar to the one of the

LR (p) statistic. For a = 0.1. a 5% test based on asymptotic critical values seem to be rejected

approximately 10% of the times, for a sample size of T = 100.

For the simulated values of a. the size distortion is similar and moderate for all the statistics,
SupQ, MeanQ. and ExpQ. Based on this, there is no reason to prefer one test over the others

based on size properties alone. Given the results in Table 3.4.2. one would expect increasing size

distortion as a approaches zero (A, approaches one).

3.5. Power Properties

In this section we study the power properties. \We evaluate the power for a sample size of 200,

when the change occurs at p = 0.1. p = 0.25. p = 0.45. p = 0.5. and the case where p is random
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Critical values: SupQ test for the interval {0.107] : [0.907].

a=0.1 a=035 a=0.9
T 10% 5% 1% 10% 5% 1% 10% 3% 1%

100 13.0964 15.1224 19.3934 10.0415 11.7753 15.4593 9.8384 11.4438 15.0366
200 123791 14.3145 18.2885 10.1298 11.8296 15.6366 10.0918 11.7574 13.3920
500 11.6036 13.5318 17.4276 10.4120 12.1095 15.7714 10.3943 12.1022 15.8074
1000 11.3536 13.1525 17.2453 10.5675 12.2131 15.9337 10.5783 12.2106 15.9890

Critical values: SupQ test for the interval [0.257] : [0.75T].

a=0.1 a=0.3 a=09
T 10% 5% 1% 10% 3% 1% 10% 5% 1%

100 11.53163 13.53806 18.0332 8.8493 10.53813 14.2715 8.7221 10.3390 14.0159
200 10.6773 12.6482 16.7293 89334 10.6191 14.4508 8.8658 10.5644 14.2996
300 9.9534 11.8281 15.9182 9.0728 10.7630 144420 9.1184 10.7993 14.5569
1000 9.6728 11.5205 15.5274 9.2111 109048 14.5491 9.1996 10.9720 14.6100

Critical values: SupQ test for the interval [0.4577] : [0.55T].

a=0.1 a=20.3 a=0.9
T 10% 5% 1% 10% 3% 1% 10% 5% 1%

100 8.2322 10.2060 14.6510 6.4282  8.0034 11.6786 6.3505 7.9074 11.3794
200 7.5132 9.3435 13.3732 6.4964 8.1012 11.6897 6.4611  8.057 11.5812
500 7.1433  8.8407 12.8035 6.3895 8.2301 11.8754 6.6023 8.1962 11.9676
1000 6.9323 8.5382 12,3834 66840 8.2449 11.7043 6.6876 8.2456 11.8379

Table 3.4.3: Critical values for the SupQ test for the case with p = 2 and r = 1 based on simulations
with 50.000 replications.
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Critical values; MeanQ test for the interval [0.10T] : [0.9077].

a=0.1 a=035 a=09
T 10% 5% 1% 10% 3% 1% 10% 5% 1%
100 4.6804 5.6105 7.8162 3.6782 4.4941 64339 3.5772 1.3829 6.2884
200 4.2271 5.1249 7.2328 3.6325 4.4703 6.4066 3.5779 4.3758 6.2836
500 3.8938 4.7481 6.6875 3.53998 14308 6.2706 3.6054 4.3829 6.3162
1000 3.7336 4.5518 6.5095 3.5891 43670 6.1787 3.5860 4.3792 6.2380
Critical values: MeanQ test for the interval [0.25T] : [0.75T.
a=0.1 a=05 a=09
T 10% 5% 1% 10% 5% 1% 10% 5% 1%
100 5.0601 6.2148 89266 4.0246 5.0241 7.4074 3.9225 4.9275 7.1663
200 4.3334 5.6746 8.2190 3.9587 4.9937 7.3705 3.9109 4.8962 7.1970
300 4.2164 3.2519 7.6751 3.9186 4.9061 7.2962 3.9071 4.8799 7.2438
1000 4.0128 5.0549 7.4785 3.8891 4.8507 7.0597 3.8794 1.8989 7.1792
Critical values: MeanQ test for the interval [0.457T] : [0.35T].
a=0.1 a=05 a=09
T 10% 5% 1% 10% 5% 1% 10% 5% 1%
100 5.777 7.3100 109838 145336 5.8791 8.9534 44797 3.7903 8.6346
200 5.1167 6.5616 9.9398 4.4882 5.7815 8.8768 4.4663 5.7630 8.7857
500 4.7581 6.1283 9.3511 4.4308 5.7725 &.7417 4.4427 5.7164 8.7102
1000 4.5380 5.8784 9.0470 4.4025 5.6926 8.6438 44235 5.7039 8.6359

Table 3.4.4: Critical values for the MeanQ test for the case with p =
simulations with 50.000 replications.
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2 and r = 1 based on
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Critical values: ExpQ test for the interval [0.10T] : {0.90T].

a=0.1 a=0.5 a=09
T 10% 5% 1% 10% 3% 1% 10% 5% 1%
100 3.6941 +.5083 6.3919 2.6652 3.3397 4.9002 2.5771 3.1987 4.6876
200 3.2559 4.0310 35.7258 2.6250 3.2893 4.9077 2.5694 3.2078 4.7276
500 2.9045 3.6250 5.2463 26054 3.2557 4.7639 2.5872 3.2176 4.7419
1000 2.77 3.4406 35.1137 25906 3.2286 4.7863 2.5866 3.2316 4.7413
Critical values: ExpQ test for the interval [0.25T] : [0.757].
a=0.1 a=0.3 a=09
T 10% 5% 1% 10% 5% 1% 10% 5% 1%
100 3.5182 +4.3459 6.2802 26042 3.3021 4.9218 2.5299 3.1869 4.7072
200 3.0662 3.8855 5.6166 2.5387 3.2592 4.8729 2.5263 3.1662 1.7410
500 2.7670 3.5060 5.1728 2.5239 3.177 4.7769 2.53221 3.1771 4.7740
1000 2.6324 3.3346 5.0206 2.5178 3.1710 4.6755 2.5131 3.1905 4.7010
Critical values; ExpQ test for the interval [0.45T] : {0.557).
a=01 a=0.3 a=109
T 10% 5% 1% 10% 5% 1% 10% 5% 1%
100 3.1722 4.0398 6.0322 2.4321 3.1591 4.8142 2.4169 3.1155 4.6726
200 2.7819 3.53738 54108 2.4142 3.1062 4.7590 2.3986 3.0886 4.7489
500 2.5612 3.2996 5.0918 23782 3.0848 4.6971 2.3768 3.0772 4.6929
1000 2.4450 3.1533 4.8359 23660 3.0563 4.6157 2.3672 3.0604 4.6186

Table 3.4.5: Critical values for the ExpQ test for the case with p = 2 and r = 1 based on
simulations with 50,000 replications.
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and uniformly distributed over the interval [0.1,0.9].

We consider alternatives in two directions: the case where there is an actual change of the
cointegration space. and the case where there is a rotation or rescaling of the cointegrating relations,
but the cointegration space is unchanged.

We modify equation (3.4.1) by replacing 3 with

1 0
3(t) = + I(t > [pT]).

-1 —c

This is the case where the cointegration space is changed after time v = [pT].

0.90 - - =
0.80 -

0.70 +-- -

0.60

0.50 -
0.40 -
0.30 -
020 :
0.10 -

0.00 -
000 010 020 030 040 050 060 070 080 090 1.00

Figure 3.5.1: The power functions in the T-convergent directions. based on simulations with 10.000
repetitions

Consider first the case where the change point is uniformly distributed on the points [7oT].. .. .
[=1T]. Figure 3.5.1 displays the power functions for SupQ, MeanQ, ExpQ, and MidQ = LR+(T/2).

under the alternative where 7 is uniformly distributed over the points [0.1T7. ... . [0.97]. and where
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the first three tests are based on the tests LRr(7), 7 = [0.1T],... ,[0.9T). and thus exclude the
first and last 10% of the LR statistics.

As can be seen from Figure 3.5.1, there is hardly any difference in the power of the first three
statistics, and the difference may simply be due to sample variation. This indicates that the
optimality of MeanQ and ExpQ over SupQ, shown by Andrews and Ploberger (1994), does not
carry over to the situation with I(1) variables. The naive MidQ test has, as expected, worse power
properties. On the other hand the MidQ statistic dominates in terms of simplicity, because it only

requires one estimation under the alternative, and has a x? distribution.

100 -
Power Function in T-glrecnians. Change at (0.28T]

00 -
Power Function in T-directions; Change at (0.17]
083 — - e 0s0

Q00 o0 a2 a3 Ce 3% aeo are o asc 100

1

— MeQ

0ed - . ----ExpQ i
a3 . . =~ ~— MeanQ
REa=—— Y - ——SupQ
aw f
oo0s - —_— -

coc LR LR LR ca LR} ceo ¢ o ox T

3 3

Figure 3.5.2: The power function for the test statistics, for a structural change in the T-consistent
directions. Upper left, upper right, lower left, lower right panel are for a change at time [0.17.
(0.25T]. [0.45T]. and [0.5T] respectively. The thin dotted line in the two upper panels is the
power envelope - the LRt test for a change at (0.17] (left) and [0.25T] (right). Based on 10000
replications for the sample size T = 200.

In Figure 3.5.2 we calculate the power functions for changes occurring at particular points in
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time. There is not any noteworthy difference between the power of SupQ, MeanQ, and ExpQ, but
not surprisingly MidQ is more powerful at 7 = T'/2, and has low power for 7 far from T/2.

Next. consider the alternatives that involve a rotation or rescaling of the cointegration param-
eter. These take the form G(t) = 8,4(t). where ¢(t) = ¢, fort < 7. and &(t) = ¢, for t > 7. and
where ¢, and ¢, are r x r matrices of full rank. A change of this type need not be associated
with a change in 3, but can instead be interpreted as a change in the adjustment coefficients a.
in a way that leaves the orthogonal compliments of a and 3 unchanged. and hence the stochastic
trend. 3, (a/,['3,) " 'a’, 375, &, unchanged. (see Johansen (1996)). This double interpretation
is explained by the fact that a and 3 are not identified from a given value of the p x p matrix a3’.
Thus, a constant and 3(t) = B¢(t) is equivalent to a(t) = a¢(t)’ and 3 constant. The parameter
estimates in these directions are only T'/2-consistent. as opposed to the T-consistency we had for
the other directions. \We may therefore expect the power of the test to be lower, and that the tests
MeanQ and ExpQ dominate the SupQ test, due to the results by Andrews and Ploberger (1994).

The parameter 3. in equation (3.4.1), was substituted with

3(t) = ! + It>1)
-1 -c
in the simulations for various values of c. where 7 is uniformly distributed on [7oT]. ... .[m T].
Figure 3.5.3 shows the power function of the test statistics. As can be seen, the MeanQ and
ExpQ do dominate the SupQ, but the power of all the tests are quite poor: for a change as large
as 3 = (1.-1) to 8 = (3. -3)’ the tests only reject the null hypothesis of no changes in about
50% of the cases, where as a change from 3 = (1.—1)" to 3 = (1. —2) is rejected in about 85% of

the times, see Figure 3.5.1.
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Figure 3.5.3: The power functions in the T"'/2-convergent directions, based on simulations with
10.000 repetitions

3.6. Conclusion

This paper showed how the Sup, Mean. and Exp test can be based on the likelihood ratio test for
changes in the cointegrating relations. and that the likelihood ratio test is easy to compute. In a
situation where the potential change point is known or chosen independently of the sample. the
likelihood ratio test is asymptotically x2. When the timing of the change point is unknown, the
MeanQ test and the ExpQ test have better power properties than the SupQ in directions in which
the parameters are T'/%-consistent. In the other directions in which the parameter estimates are
T-consistent, the MeanQ, the ExpQ, and the SupQ have similar power. The naive MidQ test is
dominated by the three other tests, but is easier to compute and evaluate.

The Monte Carlo study indicated some dependence on nuisance parameters in small samples.
This bias is not alarming when the stable roots are not too close to unity.

Information on how to correct for the bias in the tests, could be obtained by additional simula-
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tions. and derivation of an approximation for the response surface, see Hendry (1984). preferably
along with an analytically derived bias correction similar to the results of Johansen (1999a. 1999b).

We leave this for future research.

Appendix C: Asymptotic Analysis and Proofs

In this appendix we give the proofs of the preceding theorems. The asymptotic analysis is a bit
involved: what only took half a page to formulate takes several to prove. Part of the analysis is
similar to the analysis of the standard model with constant parameters, (see Johansen (1996)).
from which much inspiration is taken. In the model with constant parameters the important
element of the asymptotics is a (p — r)-dimensional Brownian motion. This Brownian motion
leads to a stochastic integral that describes the limit distribution of the cointegration parameters.
In this model with a structural change the asymptotics involve, in part. a stochastic integral and.
in part. standard results from the stationary analysis.

In the following, we derive for simplicity the asymptotic distribution with D, = 0. More
general choices of D, would change the rate of convergence for some of the limits we derive. but
will not change the main results: That the asymptotic distribution of the cointegration parameter
estimates are mixed Gaussian and that the likelihood ratio test. for no change against a change

at a known point in time, is asymptotically x2.

C.1. Limits and Rate of Convergence

In the asymptotics we shall keep the proportion of observations in each sub-sample constant as T
goes to infinite, and we denote the ratio of observations in the first sub-sample by p = = € (0.1).
Under the null hypothesis, the parameters are constant 3, = 3, = 3. and 3’ X, and AX, are

stationary. So we can adopt many results from Johansen (1996). We denote the covariance matrix
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Yoo Xog AX, Zot
= var IAJY(_l,... ,AXg-k+1 = var lZgg

30 Xaa B'Xe 32z,

From Johansen (1996) we have the identities

Tosl3; = « (C.1)
Yoo — 2032531230 = O (C.2)
(43 ~ To0T50 E03) " =54 = a'0la. (C.3)

By the law of large numbers we have that Sgg 2 S00. 310 & Ta0. 3'S118 & 33, and that the

following Limits in probability are well defined:
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where 53 = 5 3.

To simplify notation we let v = 2p — 1. and define

Ta03 = ZT0Zg0Los
S8 = ZTa2fy'Tas
£l = Zas+(1-+%)Ks,.
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where (1 — 42) is a measure of the change point position in the sample, with (1 — 42) = 1 if the
change point is in the middle of the sample and decreases to zero as the change point approaches
the beginning or end of the sample.

From Chapter 1 we have the Granger representation which gives the moving average represen-

tation of the process

¢
Xe=CY e +C(L)er +C(Xo~T1Xo1 — -+ = Tic1 X k1)

=1
where C = 3 (o/J_l"B_L)_l o, and where C(L)¢, is a stationary process. The continuous time
limit (of the non-stationary directions) are denoted by

T-Y23 Ryry = 3. CW(u) = G(u). (C.4)

where 117(u) is a Brownian motion with no drift and covariance matrix Q. and — denotes weak
convergence on D{0. 1], (see Billingsley (1999)).

Next. we define

so that B. By and B; form a mutually orthogonal basis, and B and By define the directions of
Z1e = (Ie<ryXi_1. Iie>+)Xi_,)" that are I(0) and B defines the directions that are I(1).

The limits of various matrices are given in the following lemma.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lemma C.1. With the definitions above we have that

B'Swo & T
BiSio & +Ts0
, = P ( Y33 ~Lass
(B.Bg)'S11(B.Bo) —
\ 1353 2}3
& el & p ( Yi03  vEs03
(B.Bg) 5108559 So1(B.Bo) —
303 7’303
~ . ? G(u)G' (u)du 0
T~'BiSuB = s
0 [, G(w)G'(u)du
. N s W [P Gaw)
B|S\. = B{(S10 — S11Ba’) & 0
[, G(awy
TiByS:. = Z.~N(0.L),xQ)
(B.Bo)'SuB1 = O,(1).

Proof. Equation (C.3) follows by the law of large numbers and the identity

B'S1o = B' Mo — B Mi2M5' Mag = 3 Mg — 3 Mia M5 Mag = 3 Sio.

To prove the other identities. it is convenient to define the sub-sample moment matrices:

My = Ty 242, ij=0.1.2
t=1
T

AP = 1Y 7,2, ij=o01.2
t=1+1

93

(C.5)

(C.6)

(C.7)

(C.8)

(C.9)

(C.10)

(C.11)

(C.12)

and similarly define ‘\-Iff) where Z;, replaces Z;,. k = 1.2. The stationarity implies that Afge.

M 1o M /(1 = p) have the same limit, and similarly for Mgy. Mza. 3'Myo. and 3’ M;,.
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\We have

BySio = (BMY — 3 MP MG Mag) — (B ME) — 3 MDA ALy)
= p(B' Mo — 3 Ma My  Mag) ~ (1 = p) (3 Mo — 8’ M2 A" Mag) + 0,(1)
= (2p—1)3'S10+0p(1)

= (2p-1)Eg0 + 0p(1).
which shows (C.6). The upper left element of (C.7) is proven by

B'SuB = 8MVB8+3MP3- (@MY + 3 M)A M) 3 + AP 3)
= (p+ (1 =p)E53—(p+(1-p))Z53(p + (1 — p)) +0p(1)

= 43— X535+ 0p(l) = X33 + 0p(1).
and the off diagonal elements by

B'SuBy = SMP3-3FMP3—(FMY + IS (LY 3 - P 3)
= (p—(1=p)E53—(p+ (1 = p))E53(p — (1 = p)) + 05(1)

= (2p—1)Z33 +0p(1) = vE353 + 05(1),
and finally the lower right element by

ByS1 By = (M + M8 -3 (MY - M@y (AL — )3
= (p+(1-p))=53 — (P~ (1 = p))E33(p — (1 — p)) +0p(1)

= T3 -E53+ (1 —7)E53 +0p(1) = Ta3 + (1 — v2)E53 + 0p(1).

Equation (C.8) follows directly from (C.5). (C.6). and the fact that Sgo 2, To0. The continuous

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



mapping theorem and (C.4) prove (C.9) and (C.10). Equation (C.11) is proven by noting that

T T
T-: S BoRus; =T 4 S "B (Rulesr) — Ruelesn)z,
t=1

t=1

is a linear combination of two Gaussian variables with mean zero, since V; = 3 R}, = Zzo ViEt—1—t
is a linear process with exponentially decreasing coefficients. So what remains is to derive its

asymptotic variance. This is found from

T T Z '
‘[‘li-l-rrl-c \ar <T‘% ZB(I)RIti:) — TH_I_%OE (T‘lvec (z B(')ii’u;‘:) (vec (Z Béft’;ﬁé)) )
. 1 1 1
T ’
= Tl-l-n;c T-! 2 E (vec (B(')I-ius;) (vec (B(')I.{’“e:)) )

T
= lim 77! Z:E(Bgél,éq,ao) w E (2:8})

= lim BiS1 By »Q=5}; % Q.

by the law of iterated expectations.

Finally. (C.12) is a moment matrix of an /(0) variable and an /(1) variable. so the term is

O,(1). This completes the proof. B
Lemma C.2. BX B.a%a. and £ Q.

Proof. The estimator of B is found by solving the eigenvalue problem
AS11 - 51055 Sa1| = 0. (C.13)
Solving this is equivalent to solving

AALS1 AT — A7S10S50' So1 AT =0 (C.14)
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where At is the full rank matrix

At = (B,Bo, T~2By).

Then. as T — oc. the solutions to (C.14), and hence (C.13), converges in probability to the

solutions of

Y53 1Zas 0 0 \ ( Y503 vEs03 0 O )
X33 Tl 0 0 vT303 v*Ts03 0 0O
_ =0. (C.15)
0 0 J$GG'du 0 0 0 0
1 ’
0 0 0 J,GGdu |\ 0 0 0 0 /
I ~I
Define the full rank matrix Q = . then
0o -JI
, Y33 vEXas ( Y33 0
Q Q =
1Tas Y5 ) \ 0 (1-+%)%Y,
| Esos  vEs0s / 305 O
Q Q =
v£303 Y*La0s ) \ 0 0
where we. in the lower right block of the first equality. used that
33— 7 T35 =Tas + (1 — 7¥*)T5; — ¥*Las = (1 - ¥*)TY3. (C.16)

So the solutions of (C.13) converges to the solutions of

P
A/ GG'du =0.
Q

[AL33 — 03! | A1 — v3)Z55]

1
A / GG'du
p
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which has r positive real solutions from the first term, since Z;} L5050 2052;} is a real sym-
metric positive definite matrix, and r + 2(p — r) zero solutions (almost surely) from the last three
terms.

So the space spanned by the eigenvectors corresponding to the r largest eigenvalues of (C.14)
converges in probability to the space spanned by the first r unit vectors. Hence the space spanned
by the eigenvector corresponding to the r largest eigenvalues of (C.13) converges to the space
spanned by the first r columns of AL! = (B. By.T% B,)'. which is the space spanned by the true
parameter values B. since B = %(B 3). Let ¢ be a 2p x r matrix with full column rank. and such
that ¢’B has full rank. The result above shows that the normalized estimator, B, = B(¢'B)~!. is

consistent for B® = B(¢’ B)™!. where the chosen normalization is ¢B = I.

One can (in theory) normalize with respect to the true parameter, that is
- s oyl
B=5(BB) .
We then have that

AT'B=(B.Bo.TiB)B = (I.Uor.Til 1) 2 (1.0.0)

which shows that Upr = B§B = 0,(1) and U = B{B = 0,(T ™).

From the identity
B =B+ ByByB + B, BB = B+ Bolor + BiUT
we have B — B = BoUor + BiUyT and

B'SuB = (B + Bl + BlUlT)lsll(B + Bolor + B1U1T)

= BS\1B +0,(1) = T35 + 0p(1)
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where the last equality follows from Lemma C.1. Similarly B’S;o = £a0 +0p(1). so the consistency

of & follows from
& =SuB(B'SuB)™' & £yuE;l = a.
see (C.1). and the consistency of Q follows from
Q = Spo — S01 B(B'511B)7'B'Sip & Tgo — 03831850 = Q.

see (C.2). 8
Lemma C.3. B has a mixed Gaussian asymptotic distribution.

Proof. The likelihood equations for a and B are given by (5‘01 - &B’S'u) B =0and d'Q(S’m -

a -’5'“) =0, so by inserting So1 = aB’'Sy, + S.; we find

0 = 5513—(&—a)5"§113—a(3—3) - (C.17)

0 = &0 (8, —a(B—B) S — (@ —a)B'Sn). (C.18)
Note that

(B-B)YSnB, = UirBy+TUI T™'B,)S, B,

I

UérOp(1) + TUI [T~ B} Sy By

1
= TU{T/ GG'du + o0,(1).
0
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so by multiplying equation (C.18) by B; from the right we find

0 = &0 [s',_,l - & (UbrBh + TU+T™'B}) §, - (G - a) 3'51,] B

a’'Q! [/dPVG' —a[TU{ ]| (/ GG'du’) + op(l)] .

by the consistency of & and €. Hence the asymptotic distribution of Uit is given by
-1
TU\r % ( / GG'du') / GdW’'Q " 'a (a'Q a)

which is mixed Gaussian. and we have shown that Ujr = O,(T™!).

In the last part of the proof. we make use of the following two results

(B-BYSuB = (UyrBy+UirBy)Su(B + Ui By + Uir BY)
= UlrBySuB +O0,(T™Y)

= UjrvEss + op(T~1/2).
and

(B-B)S1Bo = (UyrBy+UirB;)S11Bo

UsrBbS11Bo + Op(T™Y)

= UgrZis +op(T7'3).

Next. let ULy = (a'Q“‘a)—la’Q“l(d — ). and multiply (C.17) by T3 (Cz’Q"‘cz)_l a’Q~! from

the left and (C.18) by (a’Q“oz)“l from the left and by (Tf Bo) from the right. This yvields the
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following two equations

(@7 ') @' TS, B = TiU.L;Tas + THUsrva3 + 0p(1)

(@'Q7'a) " o’ Q T8, By = THULrvEss + THUGEY; + 0p(1).

which can be expressed in matrix form

Y33 vEs3 TiUar B\ . ra—1 \~1
= Sic Q7 la (@'Q7a) T +0p(1)
1Li3 £l T*Uor B
such that
-1
TiUar v £33 vXas . rye1 y ~1
— Zo T (a Q- a)
TiUor L33 Ll
. X33 vEass . - -
where Zeo ~ N(O. % Q). The asymptotic normality of (B. By)'S): can be
vX33 233

proven the same way as (C.11) was proven.

Isolating Upr and U, we find that

Z.
-1

(T%L-OT-TL'IT) = (T%BosTél)l(é -B) % s GG'du]—l I3 G @dw) 27 'a (@'Q 7 'a)

[ coa] ™ [} G (awy

which shows that B is mixed Gaussian, with a partly non-stochastic mixing parameter. il
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C.2. Expansion and Asymptotic Distribution of the LR Test

Proof of Theorem 3.2.2. Recall that B’ = B’ so that

Q = Se —aB'S) Bag

= Soo — Sa1B(B'S1,B)"'B'Sy0

where we substituted in for & = Sg; 3(3'5113)“. and note that

IQI = lSOO —SOIB(BISUB)—‘Blgld
— ISOOI,B,(S.'II _~~§.1059-015.'0[)B|'
|B'Sy, B|

For the restricted model, where B is known, we similarly have that

|B'(S11 — S10S50 S01) B

2! = |Sool =
|B'S,, B

So the quotient test is given by

QT = |1B'(S11 — 510550 S01) Bl /!B’(S'u — 510550 So1) B]

IB,gllBl Iélgllél

If we define

Cr = A7(Su - $10S5 So)Ar

.451-.5.‘11.41*.

O
h.i
!
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where A7 = (B.By.T~'/2B,). we have that Cr and Dr are O,(1). Now. (B — B) = Bolor +

B\Uir = ArUr, where Ur = (0. Ujy, T'2U{ 1)’ = O,(T~'/2), so we have

(B-B)S1(B-B) = UpDrUr = 0,(T"!)
(B-BYSuB = UiByS)B=0,(T"'/?)
(B-B)Swo = UgrBySio+ O0p(T™") = Ox(T™'/?)

and similar identities involving Su-S 1050'01501.

\We use the expansion. taken from Johansen (1996), of f(z) = |[z'Mz|/|' N}

log f(zr+h) = log f(r)
—tr{(£'Nz)"'R' (N — Nr(2'Nz)~ '’ N)h}
+tr{(z'Mz)" R (M — Mx(’Mz) '’ M)h}

+O(llRl).

where O([|hl|) = max,  |h: ;|- In our case we have r = B. h = B — B. M = Si1 — $1055! So1. and

N = §,,. The first term is given by

tr{(B'$1,B)" (B - BY (511 - $1,B(B'$1,B)"'B'S11)(B — B)}
= t{E35(U+DrUr — UgrvE33E3553700r) } + 0p(T1)

= t{E35(UFDTUr — Y*UrEasUor)} + 0p(T71).
and similarly we find the second term to be

tr{(S33 — La03) " "(UrCrlt — YU (T35 — £303)lor)} + 0p(T71).
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Since h = (B — B) is Op(T~*/2), the remaining term O(||Al|%) is O,(T~3/2).

Now ULCrUr = UpDrUr — YU Es05U0r + 0p(T~1). so the two terms nicely add up to

tr{{(£s5 — a03) "' ~ 330U DrUr — +*U§rEa3Uor)} + 0p(T™1)

=tr{a'Q ' a(U4DrlUr — vV2U§rEs3Uor)} + 0,(T1).

where we used (C.3).

Finally,
.’ - 270 ) r _ o 1/2pr0 = rOT ) —1
UrDrUr — v*UgrEsslior = (Uor. T /U r)2 +0p(T7H).
TV2Ur
where
(1 -+v3)xy, 0 0
== 0 I3 GG'du 0
0 0 J, GG'du

(see (C.16) for the upper left element). We can conclude that
—2logQ = tr{Z1Z1} + 0,(1).

where

Zr = (@'07'a)* (T4 TUI,) 2
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is asymptotically N (0.7, % I+ 2(p—r)). which shows that
—2logQ 5 x2(2pr — r3).

a

Consider the test of 3, = 8, = 3, against 3, = 3,. By applying an orthogonalization argument
we can give the last proof.
Proof of Theorem 3.2.3. The restriction of 3; = 3, can be expressed as the linear restric-
tion B = H3 where H = ([,. 1,,)'. Define the projection matrix Py = H(H'H)~'H’. then the

likelihood ratio test of the simple hypothesis of 3, = 3, = 3, against 3; = 3, can be expressed as

—2logQ(3, = 35 = 3,3, = 31)
= Ter {o'Q7 aUgr. TV2Ul7) Pu 1t Pu(Ugr TV3U ) } + 0p(1)

=tr {zr.-u QAranT! .-\[Z'T} +O0,(T™1).
for some r + 2(p — r) x p matrix M with full rank p. This shows that

~210gQ(3, = 3,|B) = tr{ZrZy} —tr {ZT.\[ (M) .\[Z'T} +O0,(T™})
= tr {ZT;\IJ_ (A AL .mz'r} +0,(T™ %)

= x3(pr).
This completes the proof. B
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Chapter 4
Determining the Cointegration Rank

in Processes with Structural Changes'

Abstract

It is well known that unit root tests are affected by structural changes in the
parameters. This chapter provides a general framework for determining the extent
of stationarity versus unit roots in a multivariate time series with structural changes.
Changes in the mean. trend. slope coefficients, and covariance matrix are all special
cases of this framework.

I derive the likelihood ratio test for determination of the cointegration rank in the
vector autoregressive model with changing parameters. Its asymptotic distribution is
shown to be a convex combination of Dickey-Fuller distributions, when the change
points are taken as given. Some tests for the case with unknown changes points are

suggested and discussed.

[ thank Soren Johansen for many valuable suggestions. All errors remain my responsibility.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108

4.1. Introduction

It is well known that unit root tests and tests for cointegration can be misleading if the underlying
process has structural changes that are not accounted for. A shift in the mean in a univariate
process causes Dickey-Fuller type tests to accept the null of a unit root, (see Perron (1990)).

In this paper. I derive the likelihood ratio (LR) test to determine the cointegration rank in a
multivariate framework where the number of structural changes may be any integer. The cointe-
gration rank may differ across the regimes. The ranks in the individual regimes are determined
simultaneously. Situations with known and unknown change points are both treated. and the
framework allows for changes in all parameters. multiple changes. and multiple cointegration re-
lations.

The framework used is the vector autoregressive (VAR) model with parameters that may
change their value at the change points. The LR test for the number of cointegration relations is
similar to the one of the standard model without changes. When the change points are known.
the asymptotic distribution is a weighted average of Dickey-Fuller distributions. known from the
standard model. When the change points are unknown. one can use tests that are calculated from
the sequence of LR tests. Such tests include the supremum of the tests (Sup-LR) and the average
of the tests (Ave-LR).

In models with structural changes. there are two types of problems. One is to determine the
number of change points and estimate when the changes occurred. (see Bai (1997. 1999). and Bai
and Perron (1998)). Another problem is to analyze the qualitative changes in the parameters. and
test for constancy of parameters. The early studies in this field, starting with Chow (1960) took the
change points as given. whereas the situation with an unknown change point has been analyzed by
Quandt (1960). Nyblom (1989), Andrews (1993), and Andrews and Ploberger (1994). In relation
to cointegrated processes. parameter stability has been analyzed by B. E. Hansen (1992a. 1992b).
Gregory and B. E. Hansen (1996), Seo (1998). Quintos (1995, 1997). H. Hansen and Johansen

(1999). and P. R. Hansen (2000c).
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The problem treated in this chapter, is the additional problem that arises from cointegration
models with structural changes. That is to determine the extent of cointegration versus stochastic
I(1)-trends. Naturally, a test for constant parameters is indirectly a test for a constant rank as
analyzed by Quintos (1997) and by Inoue (1999) who derived the rank test (test for the number
of cointegrating relations) in the situation where the process may have a broken deterministic
trend. This chapter generalizes this problem to a situation with multiple structural changes,
where the changes may affect any parameter. including the linear trend. I provide a test for
determining the cointegration rank that may change at the change points: the test for constant
rank is a special case of this test. The method allows for some parameters to be held constant
across some (or all) subsamples. This is often desired in practice to avoid an overfit by having too
many free parameters. A structural change in all parameters is easy to estimate using parameter
estimates based on the different subsamples. whereas the case with a partial structural change
(some parameters held constant) can be solved with techniques developed by Boswijk (1995) or

the generalized versions thereof, derived in Chapter 3.

4.2. The Statistical Model

We consider the p-dimensional vector autoregressive model with structural changes in the param-
cters which may change their values at change points. The case with rn structural changes results
in m + 1 distinct sub-samples with m + 1 (possibly) different parameter values. The time of the
change points is denoted by Ti.... .T,, where 0 < T} < --- < Trn < T. such that subsample j. is
givenby T, +1.... .Tj,j=1.... . m+1 where Ty =0and T\p;. = T.

In the error correction form the model is given by

. k-1
AXe=T,Xe1+ ) _LiAXee, + 8Dy + 2. t=T,1+1.....T,.

=1

where =, is assumed to be independent and Gaussian distributed with mean zero and variance
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Q. The variable D, contains deterministic terms such as a constant, a linear trend and seasonal
dummies.

For each of the subsamples, j = 1,... ,m + 1. we assume that the characteristic polynomial,
A;j(z)=I(1-2z)—M;z— Z::[l [:i(1 — z)2%, has its roots outside the unit circle or at one (z = 1).
and that the number of unit roots equals the reduced rank of IT;. j = 1.... .m + 1. When there
is at least one unit root, these conditions ensure that X, is integrated of order one within the
subsample. (see Johansen (1996)).

If the number of unit roots are less than p. then the process is cointegrated. We denote the
(cointegration) rank of I1; by r;, and write [1; = ;3] where a; and 3, are px r; matrices with full
column rank. j =1.... .q. As shown in Johansen (1988). 3; defines the r; cointegrating relations

whereas «, can be interpreted as the adjustment coefficients.

4.2.1. Estimation

In the situation where ali the parameters a(t). 3(¢).T;(t).... .Tk—1(¢) and $(¢) have structural

changes. the model is easily estimated using the reduced rank regression techniques of the standard

model. applied to each of the subsamples.

The parameter estimation under partial structural changes is slightly more complicated. Con-
sider first the case where only a(t) and 3(t) have structural changes.

We define the indicator functions [;(t) = (T, +1 <t < Tj)forj=1..... m-+1. and with the
conventions Zg, = AX,. Z1e = (X [1(t).... .. t—tIm+1(t)) and Zy, = (AX{_;.... .AX{_;41-

Dy)’. the model can be expressed as:

Zog = (Q[.... -Qm+l).3,ZIt + ‘I’Zgg + z¢.
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where ¢ = (I'y.... .[¢—y. P) and where

(ﬁl o . o o )
0 4, 0
8=
0 3, O
\ 0 0 o 0 B

This structure of 3 leads to a generalized reduced rank regression problem, because the structure
can be formulated by the linear restrictions vec(3) = H,. where H is a known matrix and
contains the free parameters in 8. To simplify notation we define @ = (a).... .a;,41). The
solution to this estimation problem is given by the corollary below, taken from P. R. Hansen
(2000c).

Consider the regression problem Zo, = af'Z,,+W¥Zy, +z, where 3 is restricted by vec(8) = Ho
and where Z;, and Z,, are F,_;-measurable and {z,} is a sequence of i.i.d. Gaussian variables
with mean zero and variance 2. The o-algebra. F,, is generated by Zgi.Zo2.... .Zg and initial
values (Zy,.2Z5;), t =1....T.

Define the moment matrices M;; = +3°7_, Z;Z},. i.j = 0.1.2. and the residuals Ry, =
Zot ~ Moa M5y ' Zoy. Ry = Zye — Mi2M3' Zo,. and the moment matrices of the residuals S;, =

%er:l RllR‘lﬂo i-j=0. 1.

Corollary 4.2.1. \With the conventions given above, the maximum likelihood estimates satisfy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the equations

vec(A(a.Q)) = H [H’ (a’s‘rla % sl,) H} T HY (& % Sio) vec (Q-l) (4.2.1)
aB) = SuB(B'suB)” . (42.2)

AB) = Seo~SouB(FSuB)” B'Sw. (4.2.3)

¥ = MpMg! —aB MppA5 . (4.2.4)

The maximum value of the likelihood function is given by

where p is the dimension of the process Zg;.

Parameter estimates are found by iterating on equations (4.2.1-4.2.4), starting from some
initial values for the parameters, and is in nature similar to the switching algorithm by Johansen
and Juselius (1992). For more on this estimation technique see Boswijk (1995) or P. R. Hansen
(2000c).

If the variance is not the same across subsamples, the likelihood equations are slightly more

complicated. In fact the likelihood equations are now given by

vec(B) = H[H'Z|,S'Z.H] " H'Z, S 'vec(Zo — CZs)
vec(a. ¥) = [Zi2Z 'Z1p2] " Z)paT vec (Z0).
T,
Q = (L -T-)™" 2.2,
¢=T1_x+1
& = ZOt—&BZu“‘i’Zm-

where ¥ is the Tp x Tp block diagonal matrix with ©; in the T; first blocks, Q; in the next T, — T
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and so forth, where

Zig2 = ((ZiB.23) = I)).

Z 4

(Z% % &)K,p, .

and where Zg = (Zo1. ... - Zor), Z1 = (Z11,--- . Z217). and Z9 = (Zo;.. .. . ZaT), (see P. R. Hansen
(2000a)).

The maximum value of the likelihood function is given by

L72T (& B.9.0y. ... Q) = (27e)? [P - Qs [Pt
where p; = (T; — Tj-1)/T. denotes the proportion of observations in the jth subsample.

4.3. Asymptotic Analysis

We first derive the moving average representation of the process. from which we can derive stochas-
tic properties of estimators and statistics.

For a p x r matrix a with full column rank, we define its orthogonal complement, denoted by
a.. as the p x (p — r) matrix with full column rank that has a’,a = 0.

Define [, = I—Zf__’_’ll [;.:. Thestandard /(1) assumptions. stated above. implies that a;'J_f‘j 3,

has full rank p — r;. and that the moving average representation for subsample j is given by

t k—1
Xe=C Y e+ Dij(L)ee + Ci(Xty o, = D DX =) t=T_i+1....T,

1=1 =1

_ -1
whereC; = 3, | (a;__L['j,Bj'L) a; , and where D;j(L)e, is a stationary process. (see P. R. Hansen
(2000b)). Let Y;, = C,;I;Cj—1-+-Tjmiv1Cjzi (T;0 = Cj).

In order to get the representation in the appropriate form we need to express all representations
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with initial values that are functions of {X,, ¢ = 0.—1,...}, rather than (X1,.... . X7, —k41).

J =1.... .m. This representation is given in the following theorem.

Theorem 4.3.1 (The Granger representation for change point processes). The moving

average representation is given by

t j—1 T,-
Xe=Tjo J_ (@+®D)+3 Yo Y (sc+®Di)+6+ Vi
i=1‘,_x+l =1 i=T,_.>x+l

where &, is a deterministic variable satisfving 6,/ max;<i<: D; = O(1) and V;, is a stationary

process.

By Donsker's invariance principle we have that 7-1/2 ZE';‘? g — W(u). where W(u) is a drift-
less Brownian motion with piecewise constant covariance matrix. given by Q; for u € [uj;_.u;j).

where u; = T, /T. In particular, for u € [uj_,.u;). we have that

—1/2 [uT] w . -
T Yo s B W(u) - W(uy).

=T, _+1

So if we define X ,7 = X1, u€ [% s;_l)_ we have, in the case where ®D, = 0,
j-1
T™V2X 1 2 (Y000 (u) — W(u;—1)) + ZT,-,,-(H"(u;) - W(uiz1)). ue€fu_r.yy).
i=1

and in the case where ®D, = p; [(T;—1 <t <T;).j=1.... . m+ 1. we find

u

T2 Xy ur — X;) = Y,0[(W(u) — W(u;_1)) —/ ’ (W(u) — W(u;_1))du]

u, -

where .‘('J =7T"! ZT;T,_X +1 X¢- The proportion of observations in the jth subsample. is given by
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pj =uj — uj—. and it is convenient to define the rescaled Brownian motion

W;i(A) = \/IKT(LV(u) - W(uy)). A= ;“%"‘I
j J i~

where 1§7()) is a Brownian motion on [0. 1] that has constant covariance matrix Q;. j = 1.....

m + 1. We then have that

[uT]
T-12 ST %m0, A= s
,_—_7‘)_l+l u] - u]._{

so that
T Y3 X . - X;) = /57T .0[W;(N) — W],

where 117 = fol W,(A)du. and we have that

T, 1
T Z (X1 - Xj))( X - Xj)Y = pjrj,(,/o (W, = W)(W; — W) duT’
t=T,_;+1

= pPj T, 0f; T_/:.o-

where £, = fol(ﬂ"j — W,)(3; — W;)'du. With this result, it is now clear that

iToF1T 0 0
-1 w ’
T S — 0 £, T10F; 0 0
0 0 Prmtr1 TmiroFme1 Tl 10
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If we set

7
S = —-Tm))™ Y RaRiy ab=0.1

l=T,-|+l

we similarly find that
S3 )1 = 0,150 / (W; — W;)dW](a, ).
The likelihood function can be concentrated to a function that only depends on 3.

Leone.(B) o« |AB)| = [Seo — S018(8'S118) '8’ S0l
IB'(S11 — S10S50" So1) Bl

Sl g8
1B'(S11 — 510550 So1)B
18’ S118] .

(see Johansen (1996)).

Define the concentrated likelihood function for subsample j. given by

IB (S(J) (J)S(J) ls({)):@jl
185517 3,1

Lj(ﬁj)—

and consider the pseudo likelihood function for the full sample

m+1 (J) _ (J) J)—1 o(7)
.. . 135(511 S0 Sor')3; l
LBy Bre) = [ 2 3 smm[ y

j=t

that weighs the individual likelihood functions by the proportion of observations in the corre-
sponding subsamples. This pseudo likelihood function corresponds to a change in all parameters,
and therefore ignores that some parameters may be constant across the subsamples in the true

likelihood function.
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It is easily verified that
Lconc.(a) = I:(Ble ceey Bm.,'.l) + Op(l)e

which makes it easy to derive the asymptotic distribution of a likelihood based test, because it
simplifies to a situation where the results from the standard model, without structural changes,

can be used.
It is well known from the model without structural changes, that the likelihood ratio test for

r = a against r = b (b > a) has the asymptotic distribution

de(b—a)=tr{/01dBF’(’/OlFF’)-l/:FdB'}.

where B is a (b — a)-dimensional standard Brownian motion, and F depends on the deterministic
term of the process. If an unrestricted constant is included in the process we have F(u) =

B(u) - f, B(u)du.

We define
LR7 /t,.. Tw/T(T1. - -Tm+1)
as the likelihood ratio test of r; = a; against r; = b;. whereb;—a; =ur,. j =1..... m+1. Since W,
is independent of W;. for i # j. we have that in a situation where T;.... . T, (or p,.... . p,,,.;) are

known. the asymptotic distribution is given by

m~+1

Z Pj,\df(l‘j)- (4.3.1)
j=1

which is a convex combination of (squared) Dickey-Fuller distributions.

This distribution is not easy to tabulate, because it depends on the valuesof p, < p, < --- < p,,
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as well as r; = 0.... .p — 1. However, it might be well approximated by I-distributions as is the

case for the Dickey-Fuller distribution, (see Nielsen (1997) and Doornik (1998)).

4.3.1. Testing Scheme for Rank Determination

Let H(a,. ... .am+1) denote the hypothesis that the cointegration rank in subsample j. denoted by
r;. equals the integer a;. for j = 1.... .m+ 1. and let H, be the hypothesis that the cointegration
rank is constant and equal to r across the subsamples r; = --- = r,,..; = r. The rank can then
be determined by testing H, against H, for r = 0.1.... until the first acceptance. Let first
acceptance define r*. Because the test statistic diverges to oc if maxr; > r. this procedure picks
r* such that r* = maxr;. with probability converging to 1 — &. where & is the size of the test, and
H.. contains the true model. with probability converging to one. Since r; may be smaller than
r* for some j. one can proceed by testing H(a.r®.... .r") against H.- fora=0.... .r* — 1 until
first acceptance, and let this define r{. Then test H(r{.a.r*.... .r*} against H(rj.r*.... .r%).
thereby defining r3. and so forth. The latter part of the testing procedure is arbitrary in the sense

that one could have chosen another ordering of the j’s rather than starting with r,.

4.3.2. Unknown Change Points

In this subsection we give some ideas on how a test for the cointegration rank can be constructed.
in the case where the change points are unknown. Unless the change points are estimated it is
uninformative to know that the rank was first two. say, and then three. Nevertheless the outcome
may be that the rank is constant, and then insight is gained.

The following two statistics might be used to determine the cointegration ranks in the regimes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



119

between the unknown change points:

Sup LR = sup LR.,,. . u, (1. - .Zms1)

O<y; < <um <1

o T _ -1
Ave LR = n Z LRT;/T,... .T,,,/T(Il e l‘m+1),
0<T i <Ta<---<Tn <T

where n is the number of elements that the sum is taken over.
Provided that regularity conditions holds (such as the probability measure being tight). then

the statistics’ asymptotic distributions are given by

m+1
sup (Z pJZf) (4.3.2)
Jj=1

O<u; < <um <l

and

1 1 1 m+1
/// 3 6,20 | dus- - du. (4.3.3)
0 Ju; U j=1

where Z¥ ~ x4p(z;).

The individual subsample statistics (Z{.... .Z%, ) are, for fixed p = (p,.... .p,,). mutually
independent. But for different segmentation of the unit interval. say p = (p,.... .p,») and p =
(Pre--w Pm). (Z0.....2% . ,) and (Zf’. . -Zsz) are dependent, because they are based on the

same underlying Brownian motion. For example.

1 1 -1
Z{’ =tr {A dBp.lF;)'[ <./0 FP.lF;;_I) A Fp.ldB;']_}'

where B, (A) = pi /2 B(M/py). Foj(A) = By j(A) = [y Bpi(M)dA. and Z? is based on Bj ;(A) =

PP B(MBy)-

[t might be the case that additional restrictions are needed in this setting. In the I(0) frame-
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work. it is well known that the Sup-test diverges if the test statistics are not bounded away from
the end points. For example Andrews (1993) showed that the Sup-LM test, for a single change,
diverges if the supremum is taken over [0. 1] rather than over [s. 1 — ] for some £ > 0. This is due
to the behavior of a Brownian motion near zero. A way to overcome this problem has been to
exclude the first and last 15% of the tests, as proposed by Andrews (1993).

In our case with multiple changes one might expect that, in addition to bounding the change
points away from the endpoints. we also need to bound the change points apart from each other,
which would be equivalent to requiring that minp; > ¢ > 0.

However. the problem need not exist in this formulation. First of all. this problem does not
belong to the framework covered by Andrews (1993); we do not have a tied down Bessel process

as our limit distribution. For a given value of p we can make the transformation from

-1
tr / dBF’ (/ FF') / FdB'

to

1 1 LIS
pjtr{/ dB, ;F' (/ F,,_,F;,_,) / F,,,,dB;,J} £.0. for p; — 0.
Q 0 1}

However. a deeper analysis is needed to conclude whether Sup LR diverges or not when p; is not
bounded away from zero.

The distributions, given in equations (4.3.1). (4.3.2), and (4.3.3), are non-standard and critical
values should be simulated in practical applications. In the case where the change point is known.
it 1s impractical to tabulate critical values, because the critical values of Z;":ll Pixgr(z;) depend on
the timing of the structural changes, (p;.... . pn4)- However, it might be possible to obtain simple
and practical formulae, from Monte Carlo studies of the response surface, or related approaches

to approximate asymptotic p-values. see for example B. E. Hansen (1997). We leave this and
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tabulation of the distribution given by equations (4.3.2) and (4.3.3) for future work.

Appendix D: Proofs

Proof of Theorem 4.3.1. Let for simplicity ®D, = 0. The result is obtained from the expression

C_}(-\’T,-: - Z rj-i‘YTJ—l_‘)
1=1

T]l " —
=C, [c,-x Y. st DimiLer +Cimt(Xpm2 = D _T1a X2

1=T,_2+1

Ti—1 k=1
- {Cim Z i+ Dji(L)er, - -1 + Cim1(Xj—2 — er—l,in—‘z—i))

=T, _2+1 =1

Ty — kf-[ k—1
~I, k1 si+ Dji(L)er,_ ka1 + Cjo1(Xj-2 — Z F,m1:X-2-,)

T,-2 'f'l 1=1
k-1
= l:f s+ D;—I(L)‘-:T)-—-l -+ ijj_[(X‘_z - ZFJ’_;,“\’J‘_Q._,')J
=T, - 2+1 =1
T, k-1
=C,T;C Yo s+ CiDiLi(Ller,, + CT,C (X2 = Y _TionX,am).
i=T,_a+1 =1

where Dj_;(L)er,_, is a stationary process. Altogether. we have the Granger representation

t k=1
Xe = O ) a+DiL)e+Ci(Xo-Y TuXoms) t=1.....Ty
i=1 =1
t _ T;-\
Xe = ¢ Y «+GCLCia Y &+ Di(L)ae+CD5_y(L)er,
=T, +1 =T, _>+1

k-1
+CFCio1(Xo— Y _[iXooy). t=Ti+1.....T.
=1
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and with the convention Y;; = C;[;C;_;---[;j_i+1Cj—i (X0 = C;), we obtain

-1 Ty-e
-0 ¥ as¥T. S avy
=T, +1 =1 =T, _-1+1
where V; is stationary. In the case where ®D, # 0 for all £. we get
T, -
¢ = Cj Z (e + ®Dy) +Z'r,, S (e +®D) +di+ V5
i=T, 1 +1 =T, _-+1

where d, = B(L)®D,. B(L) is a stationary polynomial, so that d;/ max;<.<: D, = O(1). Note that
we have the stationary cointegrating relations in the jth sub-sample given by 3’ X, = 3,D;(L)z..

which does not involve elements from sub-samples prior to the jth sub-sample. B
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Chapter 5

Estimation of Cointegration Models with Heteroskedasticity

and Autocorrelation under Parameter Restrictions’

Abstract

This chapter derives a general estimation technique that is applicable to the coin-
tegrated vector autoregressive model under parameter restrictions. [t allows for a
general form of the covariance matrix and is well suited for estimation of models with
heteroskedasticity and serial correlation.

Applicability includes: cointegrated VARMA models. panel cointegration models,
cointegration models with structural changes. and cointegration models under restric-

tions imposed by Granger non-causality.

I thank James D. Hamilton for many valuable comments. All errors remain my responsibility.
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5.1. Introduction

Reduced rank regression (RRR) takes the form
Zot = .4BIZ“ +CZy +z. t=1..... T.

where Zo,, Z),, and Z5, are vectors of dimension p. p;. and p, respectively, and where A. B, and
C are parameters of dimension p x r. py X r, and p x p2 respectively.

The estimation problem in the cointegrated vector autoregressive model (VAR). for a given
cointegration rank, is a reduced rank regression problem. and Johansen (1988) showed how pa-
rameter estimates can be obtained in this case by solving an eigenvalue problem. This approach
is similar to the methods by Ahn and Reinsel (1990) and the canonical correlations by Anderson
(1951).

Johansen's technique is directly applicable to parameter estimation under restrictions that
take the form 4 = G¥ and B = H for known matrices G and H. while problems of the form
B = (Higy..... H.pz,), for known matrices Hj..... H,. can be solved by a switching algorithm of
Johansen and Juselius (1992), that reduces the estimation problem to a simple RRR problem in
every iteration.

Boswijk (1995) derived a more general estimation technique that solves estimation problems
of the form vec(A) = Guv + g and vec(B) = Hy¢ + h, where vec(-) is the vectorization operator, G
and A are known matrices, and g and h are known vectors.

When {:,} is a sequence of i.i.d. Gaussian variables with mean zero and constant variance
Q (a p x p matrix), the techniques vield maximum likelihood estimators when Z,, and Z,, are
measurable F,_,. where F, = 0(Z0.1.202--- - - Zot. Z1,0-22,0)-

This chapter derives a generalized reduced rank regression (GRRR) technique. that contains
each of the above techniques as a special case. The technique is applicable to a more general class

of parameter restrictions, as well as more complex structures of the covariance matrix, including
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heteroskedasticity and autocorrelation. The technique can be extended to non-linear restrictions by
localized linear approximation, and thereby include the class of parameter restrictions considered
by Elliott (1997, 1998). However, the non-linear aspect is not treated in this paper. The technique
by Elliott (1997, 1998) uses minimum distance methods applied to the cointegrated regressions
(see Engle and Granger (1987)), whereas the technique in this paper is motivated by likelihood
analysis of the cointegrated VAR. In Section 5.3, we show how the GRRR technique is applicable to
several estimation problems. This chapter is only concerned with the estimation problem. whereas
(asymptotic) probabilistic properties of the estimators are ignored. In most cases, the probabilistic

properties will depend on the problem at hand, and most results already exist in the literature.

5.2. Generalized Reduced Rank Regression

We define a generalized reduced rank regression, as the following regression problem:

Zot = ‘4312“ "'r-CZQg +s5. t=1..... T (52.1)
s.t. vec(A.C) = Gu+ag.
vec(B) = Hg+h.
where G and H are known matrices, g and h are known vectors. and where = = vec(z;..... ET) ~

N(0.X). The RRR is a special case of the GRRR. This can be seen by setting G = [. H = [,
g=0.h=0 and £ =Ir % Q.
Notice that {s,} need not be i.i.d. In fact the general structure of ¥ allows for both het-

eroskedasticity and serial correlation.
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5.2.1. When the Covariance, ¥, is Known

It is convenient to define

T
M = T71 N [A'SR A« 2,2y
tr=1
T
Nige = T7' Y vec(Z1(Zo- - C22r )TV A) .
t,r=1
T B'Z\Z,,B B'Z,.Z5.
M'éac - T_l Z: 1t4g 1t 49 v Z;l
t,7=1 ZggZ;,.B Zzzzé,-

Nhac T! Z vec (£ Zo- (21, B. Z3,)) -

t,r=1

where ;' is a p x p block matrix of £~!. such that the [i. j|th element of £;;! is the [(t—1)p+i. (7~
1)p + jjth element of £~ i.j =1..... p. (see Lemma E.7). The identities simplify considerably
in the situation where autocorrelation of {z,} is excluded. a situation we treat separately below.

We can now formulate the most general theorem.

Theorem 5.2.1. Let the parameter A. B. and C be restricted by vec(dA.C) = Guv + g and
vec(B) = Ho + h and suppose that = = vec(gy..... er) ~ N(0.X).

Then the parameter estimates of A. B. and C are derived by iterating on the equations

vec(A.C) = G[G'MY¥G])™ G (N - Mi<q) +g. (5.2.2)

vec(B) = H[H'MYH]|™' H' (N - Mh) + h. (5.2.3)

until convergence. from some initial values (A(®, B(®) C(©)) The maximum value of the likelihood

function is given by
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‘[‘)v ::.'g = Zog - .-iB,Zu - C'Z'_)g.
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The equations (5.2.2) and (5.2.3) may seem complicated at first. However, a closer look reveals
the structure of a restricted GLS problem. which is indeed what the individual estimation problems
reduce to.

Since the likelihood function is bounded by its maximum, then an algorithm based on these
equations will eventually converge. It is not obvious that the likelihood function does not have local
maxima, where the algorithm can get stuck. One can investigate the presence of local maxima. by
starting the algorithm at different initial values. (A%, B(® C©)) and verifying if the algorithm
leads to the same value of the likelihood function. No local maxima have been found in simulations
using this approach. so it is possible that there is not a problem with local maxima. and that the
global maximum will always be found by iterations on the likelihood equations.

We now turn to some simpler situations. First the case where autocorrelation of {z,} is ex-

cluded, but heteroskedasticity is not. In this case ¥ is block diagonal. and we denote the T diagonal

matrices by Q(¢). ¢t =1..... T. We then have that ' = Q(t)~! for ¢ = 7 and 0 otherwise. and
we define
T
My = TTY[AQ0)TA 202
t=1
T
N’iec = T Z‘-’ec (Z1:(Zor — CZ'.’r),Q(t)-lA) :
t=1
T B'Z,Z,B B'Z.Z5
My = T'S =)~
t=1 ZnZ,B Z2nZy,
T
N’E;’ = T} Zvec ()" ' Zoe (27, B. Z2.)) -

Corollary 5.2.2. Let the parameter be restricted as before: vec(A.C) = Gu+g. vec(B) = Ho+h
and let = = vec(z;..... er) ~ N(0.X). where ¥ is block diagonal. with diagonal block given by

Qft).
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Then the parameter estimates of A. B. and C are derived by iterating on the equations

vec(A.C) = G[C'M¥G]™ G (N —M5g) +g. (5.2.4)

vec(B) = H[H'MYH]™ ' H (N%& - M“h) + . (5.2.5)

until convergence. from some initial values (A(®. B(®) C9). The maximum value of the likelihood

function is given by

T T
Loax(A.B.C) = (27)" 7 (H 1Q(t)[-%) exp (-é Z;‘-;Q(t)“ét) )
t=1 =

e=1

where .-fl = Z()t - ."iB,Z“_ - éth.

corollary corresponds to the homoskedastic situation. Define

MY = [AQ7 A,

NAT = vec (M — MpCHQ™1A).

M = B’M B B\, -t
My B Mo

NE = vec(Q (Mg B. M) .

where M, = T~' S0 ZuZ),. i.j=0.1.2.
Corollary 5.2.3. Let the parameter be restricted as before: vec(A.C) = Gu+g. vec(B) = Ho+h

and let = = vec(zy..... 1) ~ N(0.X). where ¥ is block diagonal. with diagonal block given by Q.

le. ¥ = [T w Q.

Then the parameter estimates of A. B. and C are derived by iterating on the equations

vec(A.C) = G[E'MYG]™ G’ (Nl ~ Mlyg) +g.
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vec(B) = H[H'MH| ' H' (N& — M¥h) + k.

until convergence. from some initial values (A®). B(® C(9). The maximum value of the likelihood

function is given by
o T
L7Y2T(A,B.C) = (27)"? Q] exp (tr (T"‘ Zégé:) Q"I) .
where 2y = Zg; — AB'Zy — CZas.

5.2.2. When the Covariance, ¥, is Unknown

The estimation technique only requires a minor modification to the situation where the general
covariance matrix is unknown and must be estimated. The equations for vec(A.C) and vec(B)
remain unchanged but a third equation, defining the likelihood equation for ¥. is added. It is not
possible to estimate an entirely unrestricted covariance matrix, since only one observation of = =
vec(gy..... cT) is available. But semi-parametric heteroskedastic and autocorrelation consistent
(HAC) estimators are available. To fit this framework an estimator of £ must be a maximum
likelihood estimator. So we need to specify an estimator ¥ that is the solution to the relevant
likelihood equation. An obvious candidate is to estimate an MA(q) process and let g increase with
the sample size T'. similar to the estimators suggested by Newey and West (1987) and Andrews

(1991). see also Den Haan and Levin (1997).

Theorem 5.2.4. Let the parameters A, B. and C be restricted by vec(A.C) = Gv + g and
vec(B) = Ho + h and suppose that ¢ = vec(zy..... =) ~ N(0.2(9)).

Then the parameter estimates of A. B. C. and 8 are derived by iterating on the equations

vec(A.C) = G[G'M¥G]™ G (N - Mi<g) +g. (5.2.6)
vec(B) = H[H'M'H]| ' H' (N3 — MA*h) + h. (5.2.7)
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6 = arg xqoin[,(.—i. B.C.6) (5.2.8)

ap
I
<
8
n
e
h~i
~
(2]
oo
1]

until convergence. from some initial values (A(® B® C© ) get

maximum value of the likelihood function is then given by

Liax(A. B.C.8) = (27)" 7 |5(8)|~} exp (—;21-%'2(9)"‘;:) .

In the situation without autocorrelation but presence of heteroskedasticity., we also need to
assume additional structure on ¥. because we only have one (estimated) observation for each of the
covariance matrices §2(t). A general formulation is to express the covariance by Qg(¢) = f(6: X¢—1)
where 6 is a parameter to be estimated, and X,_, is a set of variables that are F,_;-measurable,

where F,_ is such that Zo,|F,_y ~ N(AB'Z}, + CZ2:.Q(t)).

Corollary 5.2.5. Let the parameters A. B. and C be restricted by vec(A.C) = Gv + g and

vec(B) = Ho + h and suppose that {z,} is a sequence of independent variables with =, ~

N(0.Qq(2)).

Then the parameter estimates of A. B. C. and D are derived by iterating on the equations

vec(A.C) = G[G'ME'G]™ G (Nl — Mlrtg) +g.
vec(B) = H[H'Mi'H]™' H (NiE - MAR) + h.

6

argrr%in L(A.B.C.9).

until convergence, from some initial values (A, B(®) C© D) where weset 5y = Zge—AB' Zy.—
CZy and Q(t) = Q4(t) in the formulae for Mlst. Nt M"t. and N%¢t. The maximum value of

the likelihood function is then given by
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An ARCH-type of Qg(t) is presented in Example 5.3.2. The estimators in the homoskedastic

case is given by the following theorem.

Corollary 5.2.6. Let the parameters A, B and C be restricted by vec(A.C) = Gv + g and

vec(B) = Ho + h and suppose that {,} is i.i.d. Gaussian. z, ~ N(0.9).

Corollary 5.2.7. The parzmeter estimates of A. B. C and € are found by iterating on the

equations

vec(A.C) = G[GC'M¥G]™' G (Nl - Mlg) +g.
vece(B) = H[H'MWH| ' H' (N"% - M"h) + h.
Q = T YZy—AB'Z, —CZ,))(Zo — AB'Z, — CZy)’

until convergence. from some initial values (A(® B C© Q) The maximum value of the

likelihood function is given by

Liax(A.B.C.Q) = (2we)™ 7 O~ F.

If C is unrestricted we define

MY = [AQ7'AxSy].
nyho __ . -1 4
N = vec(S1007'4).
MY = [B'SB:<I,.
N—iéa = vec (SQIQ“IB) .

where S,; = T~! Z;r:l RitRji. Rie = Zip — M2 M5' ' Z2,. i.j = 0.1. So the residuals, Rg, and Ry,
are Zg, and Z;, corrected for Z,. and S;j, i.j = 0.1 are the moment matrices of these residuals.

We then obtain the following result of Boswijk (1995).
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Corollary 5.2.8. Let A and B be restricted by vec(4d) = G{ + g and vec(B) = Ho + h. for
known matrices G and H. and vectors g and h. and let ¥ = [t <) be known. Then the parameter

estimates of Model (5.2.1) are derived by iterating on the equations

vee(d) = G[G'NIG] To (N - Myg) + 9.
vec(B) = H [H’NI{;"H] L (N - 1\71{;%) +h.
Q = Spo—SnBA + AB'S;,BA’ — AB'Sypo

until convergence, from some initial values (A. B.Q) = (A°%. B9.Q°%). and then calculate

C = MpMyp' — AB' MM

The maximum value of the likelihood function is given by

L72T(A.B.C.Q) = (27€)” ).

If g = 0 and h = 0 the equations for A and B simplify to

vec(A) G[G'(B'S11B < I)Gl™' G'vec (50127 "' B) .

vee(B) = H[H'(AQ 'A% 8)H]™" H'vec (S1007'4).

If 4 and C are unrestricted we have the following result.

Corollary 5.2.9. Let B be restricted by vec(B) = Ho + h. Then the parameter estimates are

found by iterating on the equations

\'QC(B) =H [H’ (‘4,0-1_4 < Sll) H] -t H’ [vec (5109_1.4) - (AlQ"l:{ s S“) h] + h
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and

A(B) = SuB(B'S,B)”"

Q(B) = 300—5013(3'5113)-13'510,

until convergence. from some initial values (A. B.Q) = (A%. B%. 09). and then calculate

C = M Mz' — AB' MMz

The maximum value of the likelihood function is given by

5.3. Applicability: Examples

Example 5.3.1 (Moving average residuals). In Theorem 5.2.4. we indicated that the GRRR
technique is applicable to cointegrated VARMA models. Since A. B. and C are easily estimated
for a fixed value of X.. all we need to add is an additional equation for the estimator of ¥.. Suppose
that {z,} is a Gaussian moving average process of order q. with Q; = cov(g,.ge—,). { = L..... q.

Then from fixed values of A. B. and C. that define the residuals. ;.. ...31. one can estimate the
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general covariance matrix

(60 - @ 0 - 0 )
Q, Qo 0
T =
0 Qo 0
\ 0 - 0 Q, - Qo)

by maximizing the exact likelihood function. There does not exist a closed form solution to this
problem. but numeric methods are available. see Osborn (1977) or Hamilton (1994). See Liitkepoh!

and Claessen (1997) for a different estimation method of cointegrated VARMA processes.

Example 5.3.2 (ARCH type heteroskedasticity). Let Q(t)~! = Q}DQ,. whereQ} = (I. X,).
X: is a sequence of p x q-dimensional exogenous variables. and D is a (p + q) x {p + q) matrix of

parameters. The parameter estimate of D satisfies

zoz(Q,DQt )7'Q = ZQt:tQZQz (5.3.1)

This can be verified from the first order conditions. Let A. B. and C be given. and define

(1..... #7) accordingly. The log likelihood equation for D is given by

t=1

T T
UD) =3 _loglQDQ:f —tr {Z ;-:Q:DQ,a} .
t=1

and

T T
(D +d) = Zlongi(D+d)Qz!—tr{zéiQi(D+d)Quﬁ}

t=1 t=1
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T T
= D)+ tr {(QiDQ:)"'QdQ.} —tr {Z é;Q;dQ,;-,} + O([ldl})?).

t=1 t=1

so the first order condition is given by
T
Dt {[Qu(@iDQ.) ™' QL — Qezd,Ql] d} =0
t=1

for all d. which proves Equation (5.3.1).

Example 5.3.3 (Structural change). Consider the cointegrated Gaussian VAR with a struc-
tural change in the cointegration relations and covariance matrix. as derived in Chapter 2. This
can be expressed as

7

3, 0 Xe—1I(t <£Th)
A.\'t = (a.a) -+ rlA.x’(__[ + . t=1..... T.

0 3, Xe_ I(t > T)

where s, ~ 1.0.d.N(0.Q) for t < Ty and s, ~ i.i.d.N(0.9Q,) fort > T;.

3, 0
Set A = (a.a). B = ' and C = I'y. Then this regression problem can be written
0 3

as a GRRR problem by the definitions ¢ = 0. h = 0. and

1
Gy O 1 0]
G = G = <lpr. Ga=1Ipp. H= = Ipr
0 G. 1 0
1

where p denotes the number of rows in a and 3. and r denotes the number of columns in a. 3,.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



137

and 3,. The covariance matrix is given by
ITl x Q 0

Y =
0 [(T—Tl) 26 Qo

T,
~f -1

E Se&piy

and because the log-likelihood function, for given values of A. B. and C. splits into the sum
1(21.Q) x Tilogi|+ tr{
t=1

+(T — T1) log |Q2] + tr {
=T+
the estimators are given by the sum of squares
- T‘
Ql = Tl_l Z::t::;
t=1
) T
= (T-T)™" D a:
t=T;+1

Q =

Example 5.3.4 (Granger non-causality). Consider a cointegration model where X, does not

T. the Granger non-causality Is equivalent to the restrictions

Granger cause Xy,. (see Mosconi and Giannini (1992)). In the VAR(2) model. AX, = I1.X,_, +
B By

FlA.\—g_l +— Zt. fort =1
(4381 12
O"zxpl . '22

=
o
il

1843}
Op-zxrl 22

22

=
I

OP.' xp1

iz

r,
Op,xp. [1.22

Cian
where p, is the dimension of X.. po = p — p; is the dimension of Xa,. ry is the rank of I122. and

i
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r1 =r — ry. These restrictions can be expressed by

Il
( L.»| 7 0 0 0
Om
0 Lo 0 0
G = prz
Ip,
0 0 L,<| ° 0
OP.'
\ 0 0 0 Loy )
(1., 0
H = 0
0 I.x "
\ [P.'

When =, ~ i.1.d.N(0.€) the covariance matrix is given by ¥ = I+ = Q.

Example 5.3.5 (Panel cointegration). The panel cointegration model of Larsson. Lyhagen.
and Lothgren (1998). Larsson and Lyhagen (1999). and Groen and Kleibergen (1999). takes the

formn
AXy, Xie1 AXy She

=af’ : +T 5 +
AX, Xl.z-l AXn,z—l Ent

where a has one of three structures

(4 81 0 O
a=1 0 0 a=Ixa
0 0 a,
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or ax is unrestricted, where 3 has the structure

3 0 0O
B=| o0 "-. o .oorB=1I, %3,
0o 0 3,
where I} has the structure
rij; O 0
r,= 0 0 . Ly=1,»xT,.
0 0 l“l.n

or I'y is unrestricted. and where . = [t < Q. The covariance matrix. Q. can either be block

diagonal

or be unrestricted.

Similar to the examples above. these (sets of) restrictions can be expressed in terms of G and

H matrices.

Example 5.3.6 (Sector cointegration). Sector cointegration is similar to panel cointegration.
The parameters have a block-diagonal structure except for one set of rows that corresponds to a

common set of variables. Xo;. This can be expressed as

/ A.\’og \ ( -X’O,L—l \ ( A"YO.t—l ( g0t \

AXy, X1 r AXi o g1t
+ L +

Il
Q
Q

\Axnz) \‘Yl.t—l/ \A‘\—n.t—l ) Znt )
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where a may have the structure:

/ agy - Qon \

ay 0 0 (aog.--.. aon)

o - 0 In %«

\OOQ,,)

or
(L..... 1) x Qp
a =
I, ~a
and 3 may have the structure
T
31 0 0 (301 """ 3011)
,3 = . ﬁ =
o - 0 I, %3

\ 0 03,,/

or
(1..... 1)« 3,
I, <3
and a similar structure for ;.
Appendix E: Proofs
For notational convenience, define
Zig2 = ((Z1B.Z3) = I)).
Z,s = (Z]%A)K,
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where K, , is the commutation matrix, uniquely defined by the K, .vec(B) = vec(B’) for any
p1 X r matrix B.

Let ¥ be the covariance matrix of ¢ = vec(s;....,e7). In practice, it can be burdensome to
work directly with the Tp x Tp matrix ¥ in equations (5.2.2) and (5.2.3). The following lemma is

therefore useful.

Lemma E.7. Let £;;! be the p x p sub-matrix of £~!, such that the (i.j)th element of Tl is

the (p(t — 1) + i.p(7 — 1) + j)th element of ©7!.

Then
T
TT'Z,Z7'20 = MEe=T' Y [Asi'Ax Z,21,]. (E.2)
t,r=1
T
T™'Z) T vec(Zy —C2Z,) = NigE=T"! Z vec (Z1(Zor — CZ2-)' 5V A). (E.3)
t,r=1
T B'ZuZ,.B B'Z\Z5,
T~'ZippS ' Zige = My =TS 1 ‘ x £ (EA)
t,r=1 ZQLZ{,B Z’_)gZé,—
T
T'Z\pyS 'vec(Z0) = NEF<=T7' Y vec(S7'Zor(Z1,B. Z3)) - (E.5)

t, =1

If ¥ is block diagonal, with T blocks of size p x p given by Q(t). t =1..... T. then

M"i

T-'Z,,7'2,4, = Mte=T1" (A'Q(t) tAx Z21,] -

i

ec (Z1(Zor — CZar)'Q(t) " 4).

M’i

T_IZ,1_4Z—I\’8C(ZO - sz) = N4C = T—l

~
[

T B'ZwZ{,B B'Z\.Z;

T2 p 7 22 = 1\4'}3‘=T—IZ % Q) !
=1 ZnZ,, B 2225,
T2, g,E vec(Zy) = N = IZ\ec )" Zoi(Z} B. Z5,)) -
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If {z:} is i.i.d. Gaussian with covariance matrix Q. the expressions simplify to:

T 21,2724 = M¥=[40'4x ).
T-'Z{ £ 'vec(Zo — CZ) = NAL =vec (M — MpC)Q714) .
;
B'M B B'M
T™'Z, 5oS Zigs = M= & ? | <ot
My B M
T7'Z) g, T 'vec(Zg) = NF =vec(Q ' (MaB. Ma)).
Proof. The identity
Z’HZ“ZH = P1 l,.(Z[ w ANE (Z{ w AYKp, -
= K., Z (Zy 2 AVECHZ,, o AV K, r
e, =1
= "Pl Z(th A --g.- (Zh./ A)Apx -
t,r=1
T
= Kep, Y (ZuZi, x ATTIAK,, -
t,r=I1
T
= 2(4:;.‘4; Z\2},).
t,r=1
proves (E.2) and
T
Z\ " vec(Zo —C2Z2) = K,p, Z (Zye © A')S:,.lvec(Zg, - C2Z,;)

t,r=1

T
= Krp, Y (Zi « AT )vec(Zor — C2yr)
t,r=1
T
= K.p Y vec(AT{}(Zor — CZ2r) Z1))
tr=1
T
= Z vec (Z1(Zo- — CZ2:)'E;V A) .

tr=1
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proves (E.3). Equations (E.4) and (E.3) are proven similarly. The last eight identities follow by
setting ;! = Q(¢t)! or £71 =07"! for t = 7 and zero otherwise. Il

Proof of Theorem 5.2.1. Applying the vec operation to equation (5.2.1) vields the equation

vec(Zg) = (Z1B i Iy)vec(A) + (25 x Ip)vec(C) + =
= ((ZLB.Z) % L)] vec(A.C) +

= Z1g2(Guv +g) +=.

which may be rewritten as
vec(Zo) —Z152g =Z,5:G + =.
Then for fixed values of B and X this is a restricted GLS problem with the well know solution

given in equation (5.2.2). using Equations E.4 and E.5.

Similarly. for fixed 4. C. and . we have the equation

vec(Zp — CZ2) = vec(AB'Z;) +¢
= (Z] = A)vec(B’) + =
= (7] % A)K,, -vec(B) + =

= ZL.‘\’QC(B) 4+ = Zl..\(HC) + h.) + =,

which we rewrite as
vec(Zo — CZ3) ~Z1ah =Z14Ho + <.
This is also a restricted GLS problem, with the solution given in equation (5.2.3), using Equations

E2and E3. B

Proof of Corollaries 5.2.2 and 5.2.3. Follows from Theorem 5.2.1 and Lemma E.7. 1B

The remaining corollaries were proven in Appendix B of Chapter 2.
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