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A BSTRA CT OF THE DISSERTATION

S tructu ral Changes in Cointegrated Processes
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Peter Reinhard Hansen 

D octor of Philosophy in Economics

University of California at San Diego, 2000 

Professor James D. Hamilton. Chair

In my dissertation, I show how structural changes in cointegrated processes can be for­

mulated in the vector autoregressive model, how parameters can be estimated, and how one can 

test for structural changes in the cases where the change points are known or unknown. My disser­

tation also contains new results about the Granger representation for / ( l )  processes and a general 

estimation technique.

Chapter one contains a  new proof of the Johansen-Granger representation theorem and 

derives an explicit expression of the Granger representation. This representation is useful for 

impulse response analysis an d  for the asymptotic analysis of cointegrated processes with structural 

changes.

Chapter two develops the case where potential change points and the number of cointe- 

grating relations are known. The number of cointegrating relations may vary over the sample. I 

show how a large class of s truc tu ra l changes can be formulated in a unified framework, and that 

parameters can be estim ated with a new estimation technique. This technique is called the gener­

alized. reduced rank regression (GRRR) technique, and is described in more detail in Chapter five.
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Tests for structural changes, and hypotheses that can be expressed by linear param eter restrictions, 

are shown to have an asym ptotic \ 2 distribution. The chapter includes an empirical application to 

the US term structure of interest rates.

Chapter three considers the case where a change point is unknown. Various tests for 

param eter constancy are studied. These tests are constructed from a set of likelihood ratio (LR) 

statistics that test for a structural change in the cointegrating relations over a pre-specified interval. 

Some tables with critical values are provided along with a study of the power of the different tests.

Chapter four derives a test to determine the number of cointegrating relations in processes 

with one or multiple structural changes. When the potential change points are known, the asymp­

totic distribution of the LR test turns out to be a convex combination of squared Dickev-Fuller 

distributions.

Chapter five presents the most general version of the GRRR technique. Several applica­

tions of the estimation technique are presented.
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Chapter 1

The Johansen-Granger Representation Theorem: 

An Explicit Expression for / ( l )  Processes*

A bstract

The Johansen-Granger representation theorem for the cointegrated vector autore­

gressive process is derived using the companion form. This approach yields an explicit 

representation of all coefficients and initial values.

This result is useful for impulse response analysis, common feature analysis and 

asymptotic analysis of cointegrated processes.

*1 th a n k  G rah am  E llio tt .  Ja m e s  D . H am ilton . H ans C h ris tia n  K o n g s tcd , A n d ers  R ah b ek . a n d  H a lb ert W h ite  for 
v a luab le  com m ents . A ll e rro rs  rem a in  m y responsibility .

1
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1.1. In trod u ction

The Johansen-Granger representation theorem1 states that a  vector autoregressive process A ( L ) X t 

= integrated of order one. has the representation X t =  C52i=t +  C{L)et 4- .4o. where

{C(L)st } is stationary' if {£t } is stationary and where To depends on initial values (X o .X _ i ).

(see Johansen (1991. 1996)). Johansen's result gives explicit values of C  whereas the coefficients 

of the lag polynomial. C{L).  and the initial value. .4o. are given implicitly.

This representation of cointegrated processes is known as the Granger representation and is 

synonymous with the Wold representation for stationary processes. Because the representation 

divides A'£ into a random  walk and a stationary process, it can be viewed as multivariate Beveridge- 

Xelson decomposition where the labels are perm anent and transitory components, (see Beveridge 

and Xelson (1981)).

The Granger representation is valuable in the asymptotic analysis of cointegrated processes, 

where typically only an explicit expression for C  is needed. Explicit values for the coefficients 

in C(L)  are useful in common feature analysis, (see Engle and Kozicki (1993)). and in impulse 

response analysis, (see Liitkepohl and Reimers (1992). Warne (1993). and Liltkepohl and Saikkonen 

(1997)). where the coefficients of C(L)  are interpreted as the transitory effects of the shocks et . 

Similarly, in asymptotic analysis of the model with structural breaks, it is valuable to have an 

explicit value for -4o.

In this paper, explicit values of coefficients as well as initial values are found using the com­

panion form, making use of the algebraic structure tha t characterizes this model.

From Johansen (1996) we adopt the following definitions: for an m  x n matrix a with full 

column rank n, we define a = a(a'a)~l and let the orthogonal complement of a. be the full rank 

m x (m  — n) m atrix a x that has a'x a =  0.

! T h e  orig inal G ra n g e r  rep re sen ta tio n  theo rem , given by E n g le  an d  G ra n g e r (1987), a sse rts  tin; e x is ten ce  o f  an 
e rro r co rrec tio n  re p re se n ta tio n  o f X t ,  under th e  a ssu m p tio n s  th a t  and  3 ' X t have s ta tio n a ry  a n d  inv ertib le
VARM A re p re se n ta tio n s , for som e m atrix  3- T h e  Jo h a n se n -G ra n g e r  re p re sen ta tio n  th eo rem , of Jo h a n se n  (1991. 
199G). m akes a ssu m p tio n s  on th e  au toreg ressive  p a ram e te rs , t h a t  precisely charac te rizes  / ( l )  processes, a n d  s ta te s  
resu lts on  th e  m oving av erag e  rep resen ta tio n  o f X t .
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3

In Section 2 the explicit representation is derived. In Section 3 we consider deterministic 

aspects of the representation. Section 4 contains concluding remarks and the appendix contains 

relevant algebra.

1.2. T h e  G ranger R ep resen tation  for A u toregressive  P ro cesses  In teg ra ted  

o f  O rder O ne

We consider the p-dimensional vector autoregressive process of order k

X t =  I i iX t —i + n 2X t - 2  +  - - - +  Ilfc.Yt-fc +  $D t t c i ,  t =  I  T.

where the process' deterministic terms are contained in Dt and where et , t =  1 T  is a  sequence

of independent identically distributed stochastic variables with mean zero2.

The process can be re-written in error correction form:

i
A.Yt =  ILYt_i + -f- <bDt +  £t . t = I ........ T

1=1

where II =  — I  +  5Zf=l 11; and T, =  — h j-  The conditions that ensure tha t X t is integrated

of order one. referred to as X t being / ( l ) .  are sta ted  in the following assumption:

A s s u m p tio n  1.2.1. The assumptions o f the Johansen-Granger representation theorem are:

(i) The roots o f the characteristic polynomial

det(A(*)) =  d e t( /  -  -  U2z2 ------ nfczfc)

are cither outside the unit circle or equal to one.

“T h e  G ra n d e r  re p re se n ta tio n  is no t relying on th e  a s su m p tio n s  on £t» since  it is e n tire ly  a n  algebraic: d e riv a tio n . 
H ow ever th e  i.i.d . a ssu m p tio n  is im p o rta n t for som e of th e  in te rp re ta tio n s  o f the  rep re sen ta tio n .
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(ii) The m atrix  n  has reduced rank r < p.  and can therefore be expressed as the  product II =  ad ' 

where a  and 3 are p x r matrices o f  full column rank r.

(iii) The m atrix a'j_r3x has full rank, where r  — I  — T, and where aj_ and 3  ±_ are the

orthogonal complements to ct and 3.

The first assumption ensures that the process is not explosive (roots in the  unit circle) or 

seasonally cointegrated (roots on the boundary of the unit circle different from z =  1). (see 

Hylleberg, Engle, Granger, and Yoo (1990) or Johansen and Schaumburg (1998)). The second 

ensures tha t there are at least p — r  unit roots and induces cointegration whenever r  > 1. The 

third assumption restricts the process from being 1(2). because (iii) together with (ii) ensures 

that the number of unit roots is exactly p — r.

Under these assumptions, Johansen (1991) showed that X t has the representation X t = 

C £ ^ _ ,  (st - r$D i)  +  C(L)  (ct + & D t) 4- .4. where C  =  3± (a'±r 3 ± )~ l a'± . By using the com­

panion form of the process, it is possible to obtain explicit values for the coefficients of the lag 

polynomial C(L) — Co + C i L  -rC ^L2 +  - • •. and the initial values contained in A . as I show below. 

The following lemma will be useful.

L e m m a  1.2.2. Let a and b be m  x  n matrices, m  > n with full column rank n. and let aj_ and 

bj_ be their orthogonal complements, respectively.

The following five statements are equivalent.

(i) The m atrix (I  + b'a) does not have I as an eigenvalue.

(ii) Let v be a vector in R m. Then (b'a)v — 0 implies v =  0.

(iii) The m atrix b’a has full rank.

(iv) The m x m  m atrix (b.a_<_) has full rank.

(v) The m atrix  £>'xa x has full rank.
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P ro o f. The equivalence of (i), (ii) and (iii) is straightforward, and the identity

a'b 0
|( a .a x )| K&.ajJI =  |(a. a ± )'(b. a x )| =  | | | | =  |a'6f |a'±aj.|

a', b a', a_i_

proves that (iii) holds if and only if (iv) holds. Finally, the identity

(  b’b 0 \
|(6.6±)| |(6 .ax)| =  K & .M U a O l  =  1 i =  Ib'b\ \b'±a± \

\  b 'J

completes the proof. ■

1.2.1. T he Com panion Form

We transform the process into the companion form, by defining

x ;  = ( x i . x u  x' t_k+ly

so that with suitable definitions

a x ' =  n ' X ' _ l +  +- £ (-

=  a - r ' X t*_1 +

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



www.manaraa.com

6

which converts the process to a  vector autoregressive process of order one. The needed definitions

rr =

a —

a 3 ' + ri r2 -  Ti
- I

Tfc-i — Tfc_2 —r  i 

0

a  r !

0 I

r*_i
0

■ 3" =

- I  

/

3 1 0

0 - I I

0

- /

( \

V 0 J

=

(  <t>Dt ^

\  U /

It is easily verified that the orthogonal complements of a '  and 3 '  are given by

a , - -

( \  

- r ' ,Q i

- r ' fc_ ,a x

3 1 =

V /

L em m a 1.2.3. Let q . 3. a * and d* be defined as above, and assume that Assumption 1.2.1 holds. 

Then the eigenvalues o f  the m atrix  ( /  +  3 ”o ’ ) are all less than one in absolute value.
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P ro o f . By Assumption 1.2.1 (i i i). the identity

a l ' f l l  =  a l ( /  -  --------- r fc_!)/3x

shows that a ± 3 ^  has full rank, and by Lemma 1.2.2. we have tha t 1 is not an eigenvalue of 

( /  -r 3 m/a ' ) .  However we need to show that the eigenvalues are smaller than one in absolute value.

Therefore consider an eigenvector v =  v'k )' /  0 of ( I  + d~'ct"). e.g. (I  + 3m/a ‘ )v =  Xv. The

upper r -r p  rows of ( /  +  3m'a ’ )v yields

t’i -i- 3 ' ( a v i  +  T i i ’2  4- • - • 4- T fc_ i i ’k) — Xi'i 

( a t ' i  -r r i  Co +  • • • +  Tfc— i I’fc) =  A l’2

which implies A.3'c2 =  (A — l) t ’i. and the remaining part implies u2 =  Ac3 =  • • • =  \ k~2vk . The case 

A =  0 clearly fulfills |A| < 1 so assume A ^  0. Multiply the second set of equations by (A — 1)/Afc 

and substitu te z =  1/A to obtain

[/( l -  z) -  a 3 'z  -  r \ ( l  -  z ) z  r fc_ i ( l  -  2 )2 fc-I]i,’fc =  0.

This is equivalent to
A r - i

1(1 -  z) -  a 3 'z  -  ^ 2  r , ( l  -  z ) z l
1 = 1

=  0 .

and since Assumption 1.2.1 has [z| >  1 we conclude that |A| <  1. ■

The result has the implication tha t under Assumption 1.2.1 the sum £ ^ 0(1 4- 3 “'a my  is 

convergent with limit (3m/a ’ )~ l , such th a t a process defined by V't =  $3“ 0(1 4- 3"'a") iu t- ,  is 

stationary whenever ut is stationary.
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Lem m a 1.2.4. W ith the definitions above we have the identities:

( /  -  CT) =  ( /  -  CT)33'

I  = (I - C T ) 3 3 '  + C ( r  -  /) + Caxa'j.-

P ro o f. Since I  — 3(3 ' 3 ) ~ l 3'  +  3 ± (3'± 3 x )~ l3'± =  33' +  3±3'± . the first identity follows from

( / - C T )  -  ( /  - C T ) ( 3 3 '  + 3 j f x )

-  ( I -  C r )3 3 ' + 3 X3 X -  3± (a'±r3_L) - l a'x r 3 ± 3 \

= ( I - C T ) 3 3 ' .

and the second follows by applying the first identity and that C  — ■

We are now ready to formulate the main result.

T h e o re m  1.2.5 (T he Johansen-G ranger representation th eorem ). Let a process be given 

by the equation
lc- 1

x x t  =  n X t _ i  +  ^  ^  a  a t —i ■+■ & D t  4 -  S t -
1= 1

and assume that Assumption 1.2.1 holds. Then the process has the representation

t
X t =  C ^ ( s .  +  * D i )  +  C(L)(s t +  $£><) +  C ( X 0 -  r ,A '_ t  r V . A ' ^

where C  — 3 X (a'x fJj_ ) 1 a 'x and where the coefficients o f  C ( L ) are given by

C i = G Q iE l, 2
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where

Q =

E  1.2 =

( /  + n r: • 

n r,

o I

\  0 
{Ip. Ip.O. ■ ■ ■ .0)'.

rt--2

r \ . - 2 Tfc-!

o o

P ro o f. Under Assumption 1.2.1 the pk  x pk matrix ( 3 ' . a]_) has full rank. We can therefore 

obtain the Granger representation for X '  by finding the moving average representation for the 

processes 3 ” X "  and a ' / X '  individually and then stacking them and multiplying by (.3*.

First, consider the process

J "  A'/ =  ( /  +  3 " a ’ )3”X ;_ l + 3 ” (si +

Since all the eigenvalues of (I  + 3 " a ' ) ,  according to Lemma 1.2.3. are smaller than one in absolute 

value, the process has the stationary representation

3 - X l  =  C ’ (L)(s’t +  *7)

w here C* = ( I + 3” ct')‘3 " . and where by stationary we mean that J w.Yt* — E  (,3''A'*) is stationary. 

Next consider the random walk

a  !% • =  a i /Xt*_I + Q i'(5 t* + * r )
£

=  a W  + 5 3 a I '( e ; + * . ?)-
t = i
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A representation for X '  is now obtained as

A7=(/r.al) / - I

The entire m atrix 1 is given in the Appendix, for our purposes we only need its upper

p rows that define the equation for X t . These rows are given by

( ( /  -  CT)0. - C H  C d x )

with the definition T* =  f \  H -+■ For simplicity, we define

F  =  ( ( /  -  CT)3. - C T \  -C r f ._ ! )

and obtain the representation for X t:

X t = (F .C q x )
C ’ {L)( e-t +4r t )

5Zx=i q x (£* + ^ r )  +  Q iA o j
t

= FC'(L)(s ' t + $ •)  +  C S i  J ^ Q l 'U r  +  * D  +  CqxqI'Xo*
1=1

t
= C(L)(££ +4>D£) + C ^ ( 5 t +  * D ,)  +  .4.

1 = 1

whore the initial value is explicitly given by

A =  C a ja i 'A S  =  C ( X 0 -  r,X _,-------- rV^Y^.^).

and the coefficients of the polynomial C(L)  are given by

Ci = F ( l  + 3 " a ' ) l3 ' ' E
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with the additional definitions

=  F D ' B ' E  1.2 .

11

r 3 0 0  • • 0

0 / 0 0

B = 0 0 0 0

0 0  • • 0

■ E l =

/

0

0

V 0 /

and 2 =

Ip

0

v  0 /

Because ( /  + 3 'a )3 ' = 3 ' (I  + ct3') we have that

DB' --- B'Q

where Q  is as given in the theorem. Thus, the coefficients can be w ritten as

Ci =  F D lB'Eh2 =  FB'Q'E =  G Q ‘E U2

where

G — FB' =  ( ( /  -  CT). - C r t  - C n . _ t ) .

where we applied the identity ( I  — C T )33 ' = (I  — CT) of Lemma 1.2.4. This completes the proof. 

C orollary 1.2.6. The coefficients o fC ( L )  can be obtained recursively from the formula

c , = c ,_ i  + y " (n  -r r j  )z ic ._ 7. i =  i.;
j= 1

w here C q = I — C  and ACq = I  and where we set Tj = 0 for j  > k.
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P ro o f. From the proof of the Johansen-Granger representation theorem we have that Cl 

GQl E i 2 - So bv defining

-4, =
M .i

= Q-4._, = Q ' E l ,z.

\  Ak t !

tedious algebra (given in the Appendix) leads to the relation

Ci — Ci_ i -r .4.2,1- C_i =  —C. i =  0 . 2 . . . .

and the structure of Q yields the equation

■42,i — ^  (̂11 +  r j)A2,i-j-  Ao.O — f  i =  1 .2 .......
j= i

By inserting Ao.i-j =  Ct- j  — C,_j_i  we find the equation of the corollary. ■

As a special case we formulate the representation for the vector autoregressive process of order

one.

C o ro lla ry  1.2.7. Let A X t =  a 3 ' X t~i  -f st be a process fulfilling Assumption 1.2.1. Then we 

have the representation

X t = c j >  +  ( 1 - C ) £ ; ( /  +  a d ') ‘ s t - t  +  CA'o
i=i ■=o

where C  =  3 ± (a'j_3 ± ) oc'± .

The result of Corollary 1.2.7 is derived directly in Johansen (1996) by dividing the process into 

its stationary and non-stationary part with the identity I  = a  (J 'a )  3' -f- 3 x  (a'± d x ) a'x . The proof 

of Theorem 1.2.5 made use of the more general identity I  = (I  — CT) 3 3 ' +  C(T — /)  +  C d x a'x of
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Lemma 1.2.4. which simplifies to the identity in Johansen (1996) when T = / .  as is the case for a  

VAR(l) process.

1.3. D eterm in istic  Term s

In this section we study the stationary polynomial's role for the deterministic term. The deter­

ministic part plays an im portant role for the asymptotic analysis of this model, because the limits 

of some test statistics depend on the deterministic term. The literature has developed a notation 

for models with different deterministic terms which we shall adopt.

First we analyze the model H \. This model contains only a constant $ D t = Mo- which in 

general will give rise to a  Unear trend in the process X t. Next, we also analyze its sub-model H \ . 

which has the deterministic term  <bDt = ctp0. This is e q u iv a l e n t  to the restriction on the constant 

C/i =  0. which is precisely what is needed for X t not to have a Unear trend. We also analyze the 

models H  and H ". Model H  has a linear deterministic trend <bDt =  /i0 +  Mit. which gives rise to 

a quadratic trend in the process X t . and the sub-model H " . has the deterministic trend restricted 

to 4>D, =  ft0 -i- a p l t. which prevents the X t from having a  quadratic trend.

1.3.1. The M odels Hi and H{

When the deterministic term  is simply a constant p 0 = <bDt . the Granger representation is given 

by

So unless C//0 =  0. the constant p.0 leads to a deterministic Unear trend in the process X t. The 

matrix C(l)  is calculated in the appendix and is found to be

At — C  ] > > _ ,  -f C(L)et -i- C(1)mq +  CMot + -4.

C( 1)

—B A ' -  C'FC.

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



www.manaraa.com

14

where B = ( I  -  C Y)3. .4' =  d ' ( rC  -  /)  and *  = IT, =  £*Z ,‘ r,.

This result encompasses two findings from Hansen and Johansen (1998). The first is that

E {3 'X t) =  3 'C (l)p 0 =  d'(rc -  I )p Q.

and the second is that in H{. where pQ = ap0, the Unear trend vanishes while the constant in the 

process is given by C (l)p  =  —( /  — CT)3p.

1.3.2. M o d e ls  H  a n d  H m

When the determ inistic term contains a linear trend, <&Dt — pQ -r p xt. the deterministic part of 

the Granger representation is given by

^ C p xt2 +  C (p0 -r ^P x) t +  C (L) (p 0 + p xt ) .

(see Hansen and Johansen (1998)). This can be re-written as

± C pxt2 + (C p0 + { \C  + C { l ) )p x) t  +  ^ C (l) /i0 - £ i C , p J  . (1.3.1)

So unless ct'J_pl = 0 the Unear trend p x leads to a  quadratic deterministic trend in the process X t . 

The only term  of (1.3.1) not derived previously, is y ~ ^ n iC\. This term is derived in the appendix 

and is given by

B A ' +  C V C  +  B A T  B A ' -  B A '^ C  -  C V B A ' -  C V C V C  -  ^  CVC.

In model H ’ where the Unear trend is restricted to p x =  a p x. (1.3.1) reduces to 

{Cp0 - ( I -  C T)3Pl) t  + C (l)p Q + ((CT -  1)3 -  C (l)) Px
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which encompasses a result from Johansen (1996. equation 5.20). because the expression for iq. 

in Johansen (1996, equation 5.20), equals (C p Q — ( /  — C r )3 p i).

1.4 . C on clu sion

We gave an explicit expression of the moving average representation for processes integrated of 

order one using the companion form for the process. The explicit expression is useful to have 

in studies of impulse response functions and in common features analysis. As a side benefit the 

approach gives a new proof of the Johansen-Granger representation theorem, a  proof that some 

might find more intuitive and easy to follow than  previous proofs.

A p p en d ix  A: P roofs  

A .I . T he Inverse o f  (d*.a^)

In the proof of the Johansen-Granger representation theorem we need an explicit expression for 

the first p  rows of (3 ' ■ a]_)/_ I. The entire m atrix  is given by

( /  -  CT)d —CTf C a  ±

(I  -  CT)3 —CTf — I  •- -C T ?._1 Co. j_

( r - C T ) 3 -C T f  • C ct j_

( I  -  CT)3 -C T ? •• -C T £_ , C a±

(r - C T ) 3 -C T ? -CT?._, -  / 2 h

which is verified by multiplying it by (d*. a^_)' and using the identity ( /  — C r ) 33 '  = (I  -  CT) 

from Lemma 1.2.4.
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A. 2. T he E xp ression  for C,

In Corollary 1.2.6 we asserted the relation C\ = C,~ i +  .42,,. i =  1.2 This relation is proved

as follows. F irst, notice from the equation for Ai given by

A,

V  *4 f c  i  /

/ / + n rt 
n r!
o I

Tfc-2 Tfc-! 

r k-2 Tfc-! 

0 0

\

4o =  Ex,

that At,, — .4>.,-fc+2 k  >  2. and that Ai,, =  A i,,_ i +  A2 ,,, why Ai,, =  Yl'j= 1 A>,j- So that

A-z,i =  - r  r j ) A 2 , , _ 2 . *42,0 =  /  * =  1 -2 .
2 = 1

and note that CA 2 ., =  C TiA 2 .i-i +  - • ■ +  CT/t_iA;t,i_i. 

Next consider

C, =  G A, = ( l - C T ) A i , t - C r ° iA 2,t ---------- C T j^A * .,

= ( I -  CT) (A2.t +  A i.,- ,)  + C(r -  /)A 2>, -  CHAa.,  CT£_i A*.,

= ( /  -  C) Aa.i + ( /  -  CT) Ai,,-! -  Cr$A3. ,  Cfl^A*.,  

= ( /  — C) A2,i + ( /  — CT) Ai,,_i

- c ( n  -  r o A a . , - ,  c ( r t _ 2 -  r t _2)Afc_ I.,_i -  c ( r t _ , -

=  G . 4 , _ i  ■+- A 2 , i

= C,_i-!-A2.i-

Which completes the proof.
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A .3. A n  E xp ression  for C (l)

In the analysis of the deterministic terms we need to  calculate

C (l)  =  F ^ ( I  + 3 m,a ’ ) 1 3 ' ,E l = - F ( 3 m,c
1=0

The inverse of

a  =

(  3‘a  J T i  3 T 2 

a  Ti -  /  r 2 

0 I  - I

■ 3,r k~2 

rfc_2

is given bv

So

Q '(/-rc )r j  d ' ( / - r c ) n  

( i  -  cr) 3 - cr t  - 1

K (/ -  cr) 3 -cr t  - 1

a' (/ -  rc) -q' (/ -  rc) n  

- c  crt + 1

- c crt

< •) l 3 ” Ei.

3,r k- l > 

r t - i

o

0

)

Q'(/-rc) r % _ l

-C T J_ i -  /

- a ' { i  -  r c ) r i  

C T i- i

c r t _ ,  +  /
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and therefore we find

(/?•'<**) 1 3 '’E i =

/  \  a ' ( / - r c )

- C

- C

and finally that

(A .l)

C( 1) =  -  ( ( /  -  CT)3. -C T ?  - c r * . , )

^ d ' ( /  -  r C) ^  

- C  

- C  

- C\

=  ( I -  CT)[3a  (rC  - I ) - C  I E l r - ) &  

=  B A '  -  C V C
■=I j  = i

where B — {I — C V )3 . A' = d ' ( fC  -  /) and =  £ * Z tl £* 'Z tl T =  ^ Z , 1 if , .

A .4. An E xp ression  for i C l

In the case where the deterministic term is given by $ D t =  /x0 +  / i , t  we make use of

f ]  ( /  +  3 ' a ’) ‘ i = ( ( .d * 'a - ) -2 -u ( r ' a - ) " 1)  . 
1= 0

The second term is calculated in the case with $ D t =  fi. and the term we need to add is given by

(3 m'a m) 2 3 ' 'E i =

(  A T  B A '  -  A ' V C  ^

B A '  -r C V C  -r C

B A '  +  C 9 C  + ( k -  l ) C
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thus

so that

F  ( ,3 "a ')  2 3 " E l =  B A T B A '-  B A 'V C

—C'&BA' -  C'ZC 'bC -  k(-k ~  l ) C * C

Y l c ' 1 =  F ( ( 3 m,a m) 1 +  (d*'a*) 2) 3 m,Ei 
1 = 0

=  B A ' +  C tfC  +  B A T B A '  -  B A 'V C

- C V B A ' -  C V C V C  -  Ar(A'~ 1)C'I'C-

R eferences

B e v e r i d g e . S.. AND C. R. N e l s o n  (1981): “A New Approach to Decompositions of Time Series 
Into Permanent and  Transitory Components with Particular Attentions to Measurement of the 
'Business Cycle7." Journal o f Monetary Economics. 7. 151-174.

E n g l e . R. F .. a n d  C. W . J . G r a n g e r  (1987): "Co-Integration and Error Correction: Repre­
sentation. Estim ation and Testing," Econometrica. 55. 251-276.

E n g l e . R. F .. a n d  S. K O Z I C K I  (1993): '"Testing for Common Features." Journal o f Business and 
Economic Statistics. 11. 369-380.

H a n s e n . P .. a n d  S. J O H A N S E N  (1998): Workbook on Cointegration. Oxford University Press. 
Oxford.

H y l l e b e r c . S.. R . F . E n g l e . C. \V. J . G r a n g e r , a n d  S. Yoo (1990): "Seasonal Integration 
and Cointegration,'7 Journal o f Econometrics. 44. 215-238.

J o h a n s e n . S. (1991): "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian
Vector Autoregressive Models,77 Econometrica. 59. 1551-1580.

----------  (1996): Likelihood Based Inference in Cointegrated Vector Autoregressive Models. Oxford
University Press, Oxford, 2nd edn.

J o h a n s e n . S.. AND E. S c h a u m b u r g  (1998): "Likelihood Analysis of Seasonal Cointegration." 
Journal o f Econometrics. 88, 301-339.

L C 'T K E P O H L .  H.. a n d  H .-E. R e i m e r s  (1992): “Impulse Response Analysis of Cointegrated Sys­
tems." Journal o f  Enonomic Dynamics and Control. 16. 53-78.

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



www.manaraa.com

20

L C T k e p o h l , H.. a n d  P. S a i k k o n e x  (1997): "Impulse Response Analysis in Infinite Order Coin­
tegrated Vector Autoregressive Processes." Journal o f Econometrics, 81. 127-157.

W a r .v e , A. (1993): “A Common Trends Model: Identification. Estimation and Inference." Semi­
nar Paper No. 555, IIES. Stockholm University.

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



www.manaraa.com

Chapter 2

Structural Changes in the Cointegrated Vector 

Autoregressive Model*

A b stract

I generalize the cointegrated vector autoregressive model of Johansen (1988) to 

allow for structural changes. I derive the likelihood ratio test for structural changes 

occurring a t  fixed points in time, and show th a t it is asymptotically \ 2 ■ Moreover, I 

show how inference can be made when the null hypothesis is presence of structural 

changes.

The estim ation technique derived for this purpose can be applied to  other gen­

eralizations of the standard model, beyond the structural changes treated  here. For 

example, the new technique can be applied to estim ate models with heteroskedasticity.

I apply the generalized model to US term  structure data, accounting for structural 

changes th a t coincide with the changes in the Fed’s policy in September 1979 and 

October 1982. Contrary to previous findings I cannot reject the long-run implications 

of the expectations hypothesis.

’T h is  c h a p te r  h a s  h en efitte d  from  m any va luab le  c o m m e n ts  from  my su p erv iso r Ja m es  D . H am ilto n  a n d  Soren 
Jo h an sen . Tom  E n g sted , G ra h am  E llio tt, N iels H n k lru p . D av id  H endry, and Ju a n  T oro. A ll e rro rs  rem ain  my 
responsib ility .
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2.1 . In trod u ction

The modelling of structural changes in cointegrated processes has been addressed by several au­

thors. In the vector autoregressive framework. Seo (1998) derived the Lagrange multiplier (LM) 

test for structural changes in cointegration relations and adjustment coefficients, and Inoue (1999) 

derived a  rank test for cointegrated processes with a broken trend. Other approaches to  modelling 

structural changes in cointegrated processes are the recursive estim ation to identify structural 

changes by H. Hansen and Johansen (1999), the combination of cointegration and Markov switch­

ing by Krolzig (1996). the co-breaking theory by Hendry (1995), and a test for a cointegrating 

relation with a structural change against an / ( l )  alternative was given by Gregory and B. E. 

Hansen (1996).

One of the main contributions of this paper is the development of a  flexible framework in 

which structural changes can be formulated. The most related paper is the one of Seo (1998), who 

considered structural changes in cointegration relations and adjustm ent coefficients, under i.i.d. 

assumptions. The framework proposed here can handle a class of changes in integrated processes 

that are more general than previously treated. Partial structural changes1 such as. a structural 

change in a particular cointegration relation or its mean can be handled, leaving other relations 

unchanged. In addition, the framework is applicable under weaker assumptions than the i.i.d. 

assumption. The test statistic invoked in this paper is the likelihood ratio (LR) test and it is 

shown that its asymptotic distribution is standard x2 when the change points are taken as given2. 

Another contribution of this paper is that it enables hypotheses testing under the maintained 

hypothesis that the underlying process exhibits structural changes. The asymptotic \ 2 results 

remain valid in this situation.

Another main contribution of this paper is the introduction of a new estimation technique, 

the generalized, reduced rank regression (GRRR) technique. This technique has an applicability

1 P a r tia l  s tru c tu ra l changes in s ta t io n a ry  processes has been analysed  by B ai an d  P e rro n  (1998) and  Bai (1999).
J T h e  case  o f an  unknow n ch an g e  p o in t leads to  a non-stan d ard  a sy m p to tic  d is tr ib u tio n . See Seo (1998) or 

A n d rew s an d  P lo b erg er (1994). I t r e a t  th is  a sp e c t in Chp.ptcr 3.
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beyond the estimation problems that arise from structural changes.

Estimation of the cointegrated vector autoregressive model was solved by Johansen (1988) as 

an eigenvalue problem, also known as reduced rank regression. This technique is directly appli­

cable to estimation under simple linear restrictions on cointegration relations, 3. and adjustment 

coefficients, a . Johansen and Juselius (1992) proposed a snitching algorithm for estimation under 

slightly more general restrictions. Boswijk (1995) derived a general estimation technique that can 

handle linear restrictions on vec(a) and vec(i3). where vec(-) is the vectorization operator.

The estimation technique of Boswijk (1995) is applicable to several estimation problems we face 

with structural changes in the cointegrated VAR. The GRRR technique introduced in this paper is 

a generalization of his technique in two directions. Fust of all, the GRRR technique allows for Unear 

restrictions on all parameters apart from the variance parameter, by which it achieves a generality 

similar to the minimum distance approach by Elliott (1997, 1998a). since the generalization to 

nonlinear restrictions expressed by functions that are well-behaved3 is straightforward. Secondly, 

the GRRR technique allows for a general covariance structure and is therefore appficable to models 

with heteroskedasticity.

The result of this paper is apphed to the US term structure of interest rates. The results are 

that the long-run impfications of the expectations hypothesis cannot be rejected once structural 

changes have been accounted for.

The paper is organized as foUows. Section 2 contains the statistical formulation of various 

structural changes in the cointegration model. The estimation problems are treated in Section 3. 

and Section 4 contains the asymptotic analysis. Section 5 contains an empirical analysis of the 

expectations hypothesis apphed to the US term structure of interest rates. Section 6 concludes, 

and the appendix contains proofs.

■' F unctions th a t tiro co n tin u o u sly  differential)!*!.

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



www.manaraa.com

24

2.2 . T h e  S tatistica l M odel

In this section we give some of the details of the cointegrated vector autoregressive model by 

Johansen (1988). The model is generalized to allow for various structural changes and it is shown 

how these changes can be formulated as parameter restrictions in a  unified framework.

2.2 .1 . T he C ointegrated V ector A utoregressive M odel

I take the p-dimensional vector autoregressive model A'( =  ITj A'£_i +  • • - +  n t.V £_fc -j- 4>Dt -f- r £ as 

my point of origin, where st is assumed to be independent and Gaussian distributed with mean 

zero and variance fi. The variable D t contains deterministic terms such as a constant, a linear 

trend and seasonal dummies. The error correction form for the model is

k- I
a a £ =  I I A £_ i  +  ^  * T  i A . V £_ [  +  4*Z?£ -r- s t .

1 = 1

and it is well known that if the characteristic polynomial, here given by A (z) = 1(1 — z) — IIz  — 

r£(l — z )z ‘. has all its roots outside the unit-disk. then A't is stationary. If the polynomial 

has one or more unit roots, then A'£ is an integrated process as defined by Johansen (1996). A unit 

root implies that II has reduced rank r  < p and if the number of unit roots equals p — r. then the 

process A'£ is integrated of order one, denoted 1(1). When II has reduced rank, it can be written 

as a product of two p x r  matrices II =  a i3 '. such that the model can be expressed in the form

fc-i
A A £ =  a d 'X t - i  +  ] T  r , A A £_ t +  <& A -h c £. ( 2 .2 .1 )

i=i

This process can be inverted to an infinite moving average representation, also known as the 

Granger representation, (see Chapter 1 or P. R. Hansen (2000b)). The representation shows (i) 

how the adjustment coefficient, a . relates to the common stochastic trends in the process and (ii) 

that 3  defines the cointegration relations.
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It is convenient to  rewrite the model as

Zot = ctd 'Z it +  V Z it  +  f t. (2.2.2)

where Z 0t =  A.Y£. Z u  = X t- t . Z2t = ( M ’, ' . ,  A X 't_k+ l. D't )' and *  =  ( r , , . . . .  r t _ i .$ ) .  so

we separate the regressors with reduced rank param eters from the regressors with unrestricted 

parameters. In some situations we want to  add variables to  the cointegTation space, such as 

exogenous variables or simply a  linear trend or a  constant. In such cases we redefine Z \t to include 

these variables and denotes its dimension by p\ rather than p, which denotes the dimension of Zot . 

The regression problem in equation (2.2.2), with no additional restrictions on the param eters, is 

referred to as a reduced rank regression (RRR).

We define a generalized reduced rank regression, as the following regression problem:

Zot =  A B 'Z u + C Z 2 t + et . (2.2.3)

s.t. vec(.4. C) = G v.

vec(B) =  H p.

where G and H  are known matrices with full column rank, and {r£} obeys the following assumption.

A ssum ption  2 .2 .1 . {c£) is a sequence o f independent p-dimensional Gaussian \-ariabIes. where 

if is independent o f  Z u  and Z2t and has the marginal distribution  :V(0. f

By this formulation the i.i.d. assumption on {s£} is relaxed, by no longer requiring an identical

distribution. We leave the exact structure of f2(t). t = 1..........T  to be determined from model-

specific assumptions on heteroskedasticity. The assum ption still implies independence of {st}. 

Estimation and inference under a weaker assumption than  Assumption 2.2.1 is treated in Chapter 

5. see also P. R. Hansen (2000a).

Obviously, the estimation problems that can be solved by a RRR can also be solved by a
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GRRR. by setting G  and H  as identity matrices, and with Q(£) =  fi.

As shown by Boswijk (1995), the following assum ption is necessary for generic identification 

of the parameters.

A ssum ption  2 .2 .2 . The matrices H  and G in (2.2.3) have full column rank and are such that A  

and B  have full column rank for all ( i p ' . *p')' £ Rn except on a set with Lebesgue measure zero. (n  

denotes the num ber o f  column in (H .G )).

Let the covariance parameters be expressed as f>(£) =  Q.t (8). 6 £  0 S. t =  1 T. This

formulation does not necessarily impose any restrictions on the parameters.

A ssum ption  2 .2 .3 . The parameters ip. ^  and 6 are variation free, that is

(v.^:.8)  £  0 t . x  © ^  x  © 0 .

This assum ption is convenient for the param eter estimation. Suppose that Assumption 2.2.3 

holds, and consider the procedure that iterates on the following three equations:

c-(n) =  a rg m ax  L ( v . ^ n~ l) . e { n ~ l ) ) .

^ n* =  arg max Z-(c>(n). *p. 0(n-1)).
V>€©,>

0 ^  = argm a

n > 1 until convergence of the likelihood function L. starting from some initial values of the 

parameters (c,(0). This procedure has the nice property that the value of the likelihood

function is increased in every iteration; the ordering of the three parameters is irrelevant. Since 

the likelihood function is bounded by its global maximum, the procedure will eventually converge. 

Since finding a stationary  point of the three equations is equivalent to solving the normal equations, 

a convergence point, say (tl’.^.O ). will satisfy the normal equations. So whenever the normal

equations uniquely define the global maximum of L. maximum likelihood estimation is achieved
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with this procedure. The information matrix is asymptotically block diagonal which eliminates 

existence of local maxima asymptotically. However, in practise local maxima may exist in finite 

samples, so one should s tart the algorithm with different initial values of the parameters, and see 

if the algorithm  converges to the same value of the likelihood function.

All the models we consider in this paper satisfy Assumption 2.2.3. An example of a model that 

does not satisfy this assumption is the GARCH model. This model has a dependence between the 

parameter space of the covariance matrix, typically denoted by Ht. and the other param eters, due 

to the dependence of Ht on the estimated residuals such as fy_i.

We need to calculate the degrees of freedom in the param eter a(f),d(£)'. The following lemma, 

taken from Johansen (1996), is useful for this purpose.

L em m a 2 .2 .4 . The function f{ x .y )  =  xy '. where x  is p x r (r < p) and y is pi x r (r < p t ). is 

differentiable at all points, with a differential given by

D f(x .y )  = x{dy)f +  (dx)y

where dy is p x r and dx is p\ x r. I f  x  and y have full rank r then the tangent space at (x . y ). 

given by {x(dy)' -r (dx)y' : dx € RPlXr. dy 6 Rp x r} has dimension (p -h p t — r)r.

So. in the case of a reduced rank regression, with x  =  a  and y = 3. the param eter space in 

which n  =  a 3 ' can vary has dimension (p -i- pi — r)r.

2.2.2. Structura l C hanges in the C ointegrated  V ector A utoregressive M odel

We now show that structural changes in model (2.2.1) can be viewed as a particular form of

(2.2.3). W ithout loss of generality, we can focus just on changes in a  and 3. because changes

in the param eters T i Tfc_i or 4> in (2.2.1) are easily handled by redefining Zit and ’I'. For

now we keep the covariance matrix. Q. constant, but later we also generalize the model to allow 

for structural changes in this parameter. Estimation, when all parameters change their value is
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easily done by estimating each subsample with the RRR technique, however in most applications 

it is desirable to keep some parameters fixed to avoid that the dimension of the param eter space 

increases too dramatically.

So. the generalization of model (2.2.1) tha t we consider is

(2.2.4)

We shall consider different choices of the time-dependent parameters <x(t) and 3(t). More specif­

ically. we consider various situations where a (t)  and 3(t) are piecewise constant, which can be 

expressed as

a (t)3 (t) ' = a i 3 \h t a q 3 'q I q t (2.2.5)

where IJ t. j  =  1 q are indicator functions that determine which ctj and 3j are active. This

formulation does not require a ,  and ctj to have the same number of columns i ^  j .  as long as ctj 

and 3j have the same number of columns. So the formulation allows for changes in the number 

of cointegration relations as well as scenarios where some relations are constant over several sub­

samples while other relations change.

By defining Z \ Jt — l j t Z \ t , j  =  1 q.  and Z u =  { Z \ u  Z [ qt ) ' . we obtain the regression

problem

Zot = (a i^ «<?)

/

\

3 l 0 

0 3-2

0

0 0

0 0

0

0

Z \t  4- ' iZ 2 t  +  St-

with a block diagonal structure of the m atrix containing the cointegration relations, denoted by

B. This structure can be expressed as a  linear restriction on vec(S) =  H and the regression is 

therefore a special case of equation 2.2.3.
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Structural C h anges in a  and 3

Consider a situation with q — 1 structural changes tha t occur at time  Tq- 1 . so that ctt and

3t can take on q different values. This can be formulated as

3 t =  <

and

-

3 t t = I ..........Ti

3 2  t — T\ 1.........To

3 q t = r,_! + i .......r.

ct i t = 1..........Ti

q i t — T\ -f-1.........To

ctq t =  Tq— i -+- 1 T.

So in this case we define Z \\ t — Z \t I{t <  T\). Z \2t =  Z \t I{T\ -r 1 <  t <  To) .Z \qt =

Z u / ( r ,_ !  +  1 <  t < T) and Z it = (Z [u .Z[ qt)'. and obtain a modei with the form of equation

(2.2.3). This formulation allows for a change in the number of cointegration relations. Let r,

denote the cointegration rank in subsample i. i =  1 q. Then the dimension of the parameter

space of n (f) =  a (t)3 (t) ' is by Lemma 2.2.4 found to be P +  Pi — r i)rl where r* is the rank

of a , J '.  i =  1 q. If the rank is constant over the entire sample, the expression for the degrees

of freedom simplifies to q(p + pi — r)r.
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S tru c tu ra l  C h a n g e s  in  th e  A d ju s tm e n t C oefficients: a

If the structural changes only affect the adjustment coefficients, a. whereas the cointegration 

relations remain constant, we can express the model as

(  3 --- 0 ^

Z0t = (O l, Oq) Z u + * Z 2t -f Ct-

\ °  3 )

where Z \t is as defined above. Since 3 is constant over the sample, so is the cointegration rank r. 

and the dimension of the parameter space for ll(t) is simply given by (qp -f- pi — r)r.

Structural C hanges in the C ointegrating  Relations: 3

When the structural change is solely due to changes in the cointegration relations 3(t) while a(t) 

remains constant, the model simplifies to

Z o t =  C k.3 \l\tZ \t -i- ■ ■ ■ -r Cl3'qI qtZ i t +  ^ Z 2 t - r  St 

=  « P I  i3/, ) Z u  +  'I'Z2t+ £ t .

where Z \t is as defined previously. Here we again obtain an equation of the form of (2.2.3). but 

in this case without additional restrictions on A. B. and C. i.e. G — I. and H  = IPirq■ In this 

situation only a constant cointegration rank, r, is meaningful and the dimension of the parameter 

space for fl(f) is given by (p + qpi — r)r.

The relations between the different structural changes are displayed in Figure 2.2.1. along 

with the relevant asymptotic distribution and degrees of freedom. The asym ptotic distribution is 

derived below, and it is not surprisingly found to be asymptotically \ 2.
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General structural change
Zot  =  C tl& \Z l l t  +  Q2f3l Z l 2t +  # Z 2 t  +  £l

X2((P t VSSV\ <̂ ( ( f ^ - ) r )

Structural change in a

Zot = c t i3 f Z m  ■+■ 0-7.f f  Z \ 2 t -r- '&Z2 t ■+■ £t

Structural change in 3

Zot =  a ( 0 l , 3 2) ' (Z 'l l t, Z 'u t ) '  +  # Z 2t s,

r)

Model without changes
Z o t  — Ct3  Z \ t  Z n t  ~ r  S t

Figure 2.2.1: The relations between the different types of structural changes. The asymptotic 
distribution of the individual LR test is \ '2 in all cases, with the degrees of freedom reported in 
the brackets.

Tem porary and Perm anent C ointegration  Relations

The scenario where some cointegration relations are present in the entire sample, whereas others 

are only present in a subsample can also be expressed in the form of equation (2.2.3). The simplest 

situation is where there are r t permanent cointegration relations, say 3 X. and for t > 7j f  1 there 

are an additional ro — rx temporary cointegration relations, say 3e. (linearly independent of 3 X). 

This situation leads to two different cases -  one where the adjustment coefficients corresponding to 

3 X remain constant, and one where they may differ in the two subsamples. The latter is likely to 

be the most relevant, since the introduction of an extra adjustment from the added cointegration
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relations might affect how the process adjusts to the permanent cointegration relations. 

First we consider the case where remains constant. This model is formulated as

Zot = a i0 \Z i t  + a e$ eZuI(f>Ti) + V Z it +

 ̂ 0 /  \  Z UI(t>T,) jZuht> T ,) /

and the dimension of the param eter space for 1I(£) is slightly more complicated to derive. The

contribution from II2  is given by [p +  (pi -  n )  -  (r2 -  r!)](r2 — r l ). Adding the two terms gives 

the degrees of freedom in 11(0 to  be (p p t -  r2)r2 (r-2 — r i )r l .

The model where the adjustment coefficients to the perm anent cointegration relations may 

change, is formulated as

which is also of the form of equation (2.2.3), but with a more complicated structure of H. due to the 

cross restrictions we have on B. The degrees of freedom are found by adding up the contributions 

from nt. a 2i and a e3'e. These are given by (p-fpi —r x)ri. p rx and  [p+(pi — rx) — (r2 — r i) ]( r2 — r x) 

respectively, where we used that 3e may be chosen orthogonal to  3 X. Adding the three terms up. 

gives the dimension of 11(0 to be (p +  pi -  r2)r2 +  (p +  r2 — r i ) r x.

The former model is obviously nested in the latter, and both models are nested in the model 

where there are not necessarily any relations between the cointegration relations in the two samples. 

This model has a structure as given above with ri cointegration relations in the first subsample 

and r2 in the second. So the model has (p +  pi — n ) r [  +  (p -f- p t — r2)r2 free parameters in

degrees of freedom in III are given by (p -r pi — r x)rx. and since n 2 =  fit -f the additional

Zot =  Ocn3\Zitf(t<Ti) +  (a 21?a e)(3i -3eYZi t I ( t>T, )  +  '&Z2t

— ( o i l - a I2 'ttc)
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n(f*). The relations between these three models are displayed in Figure 2.2.2. Below we prove 

th a t the likelihood ratio test for this hypothesis is asymptotically x 2 with degrees of freedom that 

correspond to the difference in dimensionality of 11(f). as one would expect.

The extension to models with multiple sets of temporary cointegration relations in individual 

and overlapping subsamples is straightforward, only the calculation of degrees of freedom can be 

somewhat tricky.

General structural change model 
r! cointegration relations for t  < T \  
r2 cointegration relations for t  >  T\  4- 1

Zot =  O l .d j  Z l  It +■ 0 2 ^ 2 ^ 1 2 1  +  * Z 2t +  c t

X2 ( ( p i  -  r2) r i )

Perm anent cointegration relations: n
Constant adjustm ent coefficients: 
Tem porary cointegration relations: r2 -  r t
Zot  =  o i i .3 \ Z i i t  -r  ( o ’2i , o c )(_0 i , / 3c) 'Z i2 t  +  # Z 2t -r £t

\ 2 (P r  l )

Perm anent cointegration relations: 
Constant adjustm ent coefficients: y
Tem porary cointegration relations: r2 -  r :

Zot =  o t i ^ \ Z n  + a tc^'eZ i 2t - r 'P Z 2t - f-ct

Figure 2.2.2: The relations between the different models with structural changes and a change in 
the number of cointegration relations. The distribution of the LR test statistic between two of the 
models is asymptotically \ 2 with the degrees of freedom given in the figure.
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Structural C hanges in th e  Covariance M atrix

Structural changes in the covariance matrix also leads to a  GRRR. The simplest case is a single 

structural change in the covariance matrix at time T\. So var(ct ) =  fii for t < T \  and var(ct ) =  fl2 

for t > Ti. which implies the following structure on the covariance matrix

_  f  ITl A fil 0 ^

y  0  It —Ti X ^ 2  )

The combination of structural changes in the covariance matrix as well as other parameters, will 

also lead to a GRRR.

Linear R estr ic tion  on  A djustm ent Coefficients and C ointegration R elations

Combining hypotheses of structural changes with linear restrictions on the cointegration relations 

will not complicate the estimation problem, because the two parameter restrictions can jointly 

be formulated as a  linear restriction vec(B) = H p  for a  known matrix H  and some param eters

p. Adding linear restrictions to the adjustment coefficients. a t  a q can be formulated as

vec( .4) =  G v. and is therefore also a GRRR.

2.3. E stim a tio n

Estimation of the cointegrated vector autoregressive model, and other models that have the struc­

ture of equation (2.2.2), can be explicitly solved as an eigenvalue problem by reduced rank regres­

sion tecluiiques. The method of reduced rank regression was developed by Anderson (1951) and 

applied to the / ( l )  model by Johansen (1988).

The advantage of reduced rank estimation is that an explicit solution is obtained without 

iterations. Fortunately this method is applicable to estimation under simple linear restrictions on 

the reduced rank parameters. However, in most of the structural change models we face restrictions
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that are beyond what the technique can handle. So a  more general estimation technique is needed.

A few of the problems can be formulated as regression problems that can be handled by the 

switching algorithm of Johansen and Juselius (1992). This algorithm is an iterative procedure that 

in every iteration simplifies the problem to a reduced rank regression by keeping a  subset of the 

parameters fixed. This method has the nice property that it increases the value of the  likelihood 

function in every iteration, but unfortunately applications haw  shown that convergence can be 

very slow. More problematic is that general convergence to the global optimum cannot be proven: 

indeed it is easy to construct examples where the m ethod will not converge.

A more general estimation technique was proposed by Boswijk (1995). This m ethod is similar 

to the switching algorithm, in the sense that it increases the likelihood function in every iteration. 

It is more general because it can handle estimation problems with linear restrictions on vec(B) and 

vec(A). This m ethod is therefore sufficient for most of the estimation problems th a t arise from 

structural change models. Applications of the method have shown that convergence is obtained 

in few iterations, and that it does converge to the global optimum. The fast convergence is not 

surprising because the information matrix is asymptotically block diagonal.

More general yet is the minimum distances approach by Elliott (1997, 1998a), which can 

estimate parameters under the general restriction g(8) = c. where 8 is the vector o f parameters, 

c is a constant and g is a well-behaved function. This method minimizes 8'V-Q8 subject to the 

constraints g{8) =  c. where V-Q is an estimate of the asymptotic covariance matrix. This method 

is asymptotically equivalent to the maximum likelihood estimation, and with suitable choice of 

Vg and if applied iteratively, (by recursive reestimation of V-Q as the estimate of 8 changes), the 

minimum distance methods leads to the same estimator as the maximum likelihood method.

As we shall see below, it is possible to estimate under more general restrictions than those 

considered by Boswijk (1995) and Elliott (1997, 1998a). By handling restrictions as formulated in 

model (2.2.3) we obtain the same generality as the minimum distance method by Elliott (1997. 

1998a). and can in addition estimate models with heteroskedasticity.
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In the following we consider the reduced rank regression model

Zot = A B ' Z \t -r CZ-n +  =£• (2.3.1)

with various restrictions on the parameters, under Assumptions 2.2.1 and 2.2.2. We denote the 

dimension of Zot . Z \ t and Zo£ by p. p x and p-2 respectively, and for notional convenience we define 

the moment m atrices M t] =  A ^2t=i Zit Z jt . i . j  =  0 .1 .2 , the residuals Rot = Zot — f 0 2 Zot. 

R\t = Z u  — M uSI.jo  Z<if and the moment matrices of the residuals S tJ = ^  BitR'Jt. L-J —

0 . 1.

2.3.1. R edu ced  R ank Regression

Estimation of reduced rank regressions is described in the following theorem.

Theorem  2 .3 .1  (R educed Rank R egression ). The unrestricted estimators o f  Model (2.2.3)

are given by

B = (£•! i'r )o  (2.3.2)

A(B) =  S0 1 B ( B ' S u B ) ~ l (2.3.3)

fi =  Soo -  S0 1 BA'  +  AB'SnBA'  -  AB 'SW. (2.3.4)

C = A/ 0 2  A/2 2 1 -  A B 'M ^M T o1. (2.3.5)

where (v 1  tv) are the eigenvectors corresponding to the r largest eigem-alues A[ Ar o f the

eigenvalue problem

|A5n — S m S ^ S o il =  0.

and where o is any r x r  full rank matrix, by which B  can be normalized. The  maximum \-alue of
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the (conditional) likelihood function is given by

r

{A. B .C .C l)  =(27re)p |50o i n ( 1 ~ A0-
t=i

An algebraic proof that uncovers the structure of the problem is given in the appendix whereas 

the original proof can be found in Johansen (1996).

This theorem is directly applicable to the cointegrated vector autoregressive model given by 

equation 2.2.1. The maximum likelihood estim ate is obtained by defining Z q l  =  A X t . Z lt -  . Y £ _ i  

and Zit =  (A A 7_, AJTt'_ t+ l . D 'J .

2.3.2. G eneralized R educed  R ank R egression

T h e o re m  2.3.2. Let the parameter A. B . and C  be restricted by vec(.4. C) = G o and vec(B) = 

H o and suppose that Assumptions 2.2.1-3 hold.

The maximum likelihood estimates A. B . C. and fl(t) o f A. B . C. and Q(t) will satisfy

vec(A.C)  

vec (B)

and 9.(t) =  9 t(d). where 8 is given from the  (model specific) equation

8 = arg max L(A . B . C .8 . Zq. Z \. Z2). (2.3.8)

T (  B 'Z u Z'l t B B 'Z u Z'2t N\  -  ,G G ' H X f 1 ( f ) - 1 G
£ =  1 \  Z 2tZ [ t B Z 2tZ 2l jI

H

J

G '^ v e c  (<7(t)-1Z0£(Z ;£5 .Z ^ ) )  .
t= \

T
h ' ^ 2  [ i ' n w - ’i  / j Z u z ; ]  h

f = i

T

x H ' 2 2 v e c ( Z u ( Z o t  - C Z 2ty t l ( t ) - u A')
t=  1

(2.3.6)

(2.3.7)
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The maximum  value o f  the likelihood function is given by

T (  \ T
Lmax(A .B .C .C l)  =  ( 2 - ) - ^ n | n ( t ) | - i e x p ( - i ^ £ ,tn ( t ) - 1;-£

w h ere  s t — Zot -  A B ' Z u  —  C Z 2 t .

The proof exploits that the estimation problem reduces to a  GLS problem, when (A .C .Q (t)) 

or (B .Q (t)) are hold constant. The proof is given in the Appendix.

The theorem yields a procedure for parameter estimation, in the sense that the parameter 

estimates can be obtained by iterating on the three equations until convergence, from some initial 

values of the parameters. As described in the paragraph following Assumption 2.2.3. this procedure 

will converge to parameter values that satisfy the normal equations.

We now treat situations with fewer parameter restrictions.

C o ro lla ry  2.3.3. Let the parameter A . B  and C be restricted by vec(.4. C) = G v  and vec(B) = 

H o and suppose that {ct} is i.i.d. Gaussian A'(O.fi).

The maximum likelihood estimates o f  A. B . C and f> satisfy the equations

vec(5 )  =  H ^ H ' x  M u'} HH  [ # ' ( A 'n - l A »  A/u ) tf] H'vec ( a / 10 -  A /ooC ')^-1 ^ )  • 

T ~ \ Z 0 -  AB'Zi  -  CZ2)(Z0 -  AB'Zi -  C Z 2)'■n  = T 'H Z o -  A B ' Z i - c z -

The maximum value o f  the likelihood function is given by

If C  is unrestricted we obtain the following result of Boswijk (1995).
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Corollary 2 .3.4. Let A and B  be restricted by vec(A) — GC and vec(B) = Ho. for knorni 

matrices G and H. Then the maximum likelihood estimates satisfy the equations

vec(B) = H  \H ' X 5 u )  tf] ” l H' (.A'  X Sio) vec (2.3.9)

and

A = G \G '  x l l - 1)  vec(S01) (2.3.10)

9. = Sqq-  SqiBA'  +  A B 'S i i B A ' -  A B 'S W 

C  = Mq2-Vo21 -  A B ' .\f 12 M-221 ■

The maximum \-alue o f  the hkelihood function is given by

L - 2J cT {A .B .C .Q ) = (2-e)p \h\.

Corollary 2.3.5. Let B  be restricted by  vec(S) =  Ho. Then the m axim um  hkelihood estimates 

satisfy the equations

vec(B(A. Q)) =  H  [ # '  ( A ' f r ' A  x S n ) (.4 ' 5 10) vec

A{B) = S m B ^ B ' S n B y 1.

9 (B )  = Soo -  S0lB  ( B ' S u B y 1 B 'S l0.

C  =  A/0 2 .U2W -  A B ’\Ix2 M22 ■

The maximum \-alue o f  the hkehhood function is given by

L - 2JcT ( A . B . C . 9 )  =  ( 2 - e f \ 9 \ .
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With these results we have the tools available to estim ate the param eters in the cointegrated 

vector autoregressive model under all the various structural changes considered in the previous 

section. However, the theorems presented here have a broader applicability, and can be used to 

estimate models with param eter restrictions that need not be related to structural changes, for 

example models with heteroskedasticity.

2.3.3. A pplicability

Exam ple 2 .3 .6  (S tru ctu ra l changes in the covariance m atr ix ). Consider the cointegrated 

vector autoregressive m odel (equation (2.2.1)). with a structural change at time  7 \. in the sense 

that a(t) =  a i ,  3(t) = 3 \  and f i(t) -- fii for t < Ty and a (t)  =  a 2, 3(t) = 32 and Q(t) =  fi2  for 

t > T\ -i- 1. This estimation problem can be r t itten in the form o f Model 2.2.3. The maximum  

likelihood estimators o f f l i  and fl2  are given by

=  7T ' & t i ' t
t= l

T

n 2  =  ( T - T , ) - 1
t = T !

So V.(t). t = 1  T  can be expressed in the functional form required by Theorem 2.3.2.

Exam ple 2 .3 .7  (H eterosk ed astic ity ). Models with the following type o f hcteroskedastic errors

var(c£) =  Qt =  fg(Qt- i - f i t - 2  • Wt_2. - ■ ■)

cun be expressed with the functional form in Theorem 2.3.2.

2.4. A sy m p to tic  A n a ly sis

For simplicity, we derive the asymptotic results in the case of a  single structural change at time T \. 

and with the number of cointegrating relations being constant, r. However, it will be clear that the

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



www.manaraa.com

41

results hold in the general situation with multiple changes, and varying number of cointegrating 

relations.

The process is described by

where zc is i.i.d . 4 N(0,Q(t)) .  Q(t) — fti for t < T \  and Q(t) =  f>2 for t > T).

In addition, we assume th a t the usual 1(1) assumptions hold in both subsamples. Specifically, 

th a t the roots of

2.4 .1 . The G ranger R ep resentation  for C hange P rocesses

In order to study the process's asymptotic properties, we need to derive the Granger representation 

for this process. The individual Granger representations for each of the sub-samples are given by

P. R. Hansen (2000b)).

In order to get the representation in the appropriate form we need to express the second

’ T h e  a sy m p to tic  re su lts  will hold  u n d er m ore genera l c o n d itio n s , th o u g h  n o t alw ays w ith  th e  sam e  a sy m p to tic  
d is tr ib u tio n . B oth  th e  G a u ss ia n  a ssu m p tio n  and  the  i.i.tl. a ssu m p tio n  can  he  re laxed  to {e( } sa tis fy in g  a  F u n c tio n a l 
C e n tra l Lim it T h eo rem , (see W h ite  (2000)).

A X t =  CXx0\Xt - l I ( t < T l ) +  <*202Xt-l-f(t>7\) +  TjAXt-i +  £(.
1 = 1

fc- 1

are outside the unit disc or equal to one, and that ct't± ( I  — Ti — ■ • • — f\-_ i)3 l± has full rank p — r.

i = 1 . 2 .

t t - i
x t =  c  5 3 =t +  c ( L ) St + C ( x q  -  r,.Y0_t) t.= .i .......r , .

i=i

and
t fc— l

r .

where C - ( a '^ r J u ^ )  1 Qix ’ ^  ~  $ 2 ± (a a x ^ 2 x) * Q2 x ^  =  /  — Ti — - - • — Tfc-i. (see

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



www.manaraa.com

42

representation with initial values depending only on Xt .  t = 0 . — 1  rather than D( A'r, —

£ * =1l T.-Yr, -,)■ This is obtained by the expression

k -  1

where

t=i

T x k -  1
C Y ,  ^  + C{L)eT, +  C(Xo -  Y  TiXo-i)

1=1 1 = 1

r , - i k-  1
- r ! C Y  + C(L)sTl- i  + C(Xq  -  Y f iX o - i )

1 = 1 1=1

r,-fc-r1 fc-l
-F t-!  C Y  £‘ +  C W - t w + i  +  C(A'o -  Y  r.A'o-.)

1 = 1 1 = 1

=  D
fc-i

r c ^ s ,  +  c * ( i)= Tl +  rc ( .Y 0  -  Y  r iA'o -.)
i=l

T x
r=l

fc- 1

=  a r c  s. +  d c  (L)£Tt +  a r c ( A 0  ~ Y r ' x 0_.).
i=l »=i

C ’d lc -r , = ( / - ( / -  rOOc-T, +  (Cl -  n C o J e r .- i  +  (C2  -  ^ C , ) , - ^  +

is a stationary process. So altogether we have the Granger representation

fc-i
X t 

X  t

c j >  +  C (I)£ t +  C(Ao -  Y  r . ^ o - . )  «  =  1 . .  
1 = 1  1 = 1  

t T ,

d  Y  =-. +  o r c V :-, +  fl(L )£( + D r ( L ) c - ri
t=r!+i 1= 1

k-  1
+ a r c ( x 0  -  Y  r -x o - )  * =  i t  +  i  r .

■ r , (2.4.1)

(2.4.2)

1= 1

Note that we have the stationary- cointegrating relations in the second sub-sample 3'2X t = 3'2D (L ) s t . 

which is identical to what it would have been in the case of a constant process. For the first sub­

sample the results are trivially the same as in the standard case without changes.
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2.4.2. The C ontinuous T im e Limits

In an asymptotic study of the process, we shall, as T  approaches infinity, keep the proportion of 

observations in each sub-sample constant. So we define p =  which denotes the fraction of 

observations in the first sub-sample.

Donsker's invariance principle gives

[ T u |

c, — ir(u). u  e  [o. lj.
£=l

where U (u) is a  Brownian motion with covariance m atrix  Cl. and where denotes weak conver­

gence. We can split this into two independent Brownian motions which gives us

( r ,  [Tu] \

T ~ h 5 1 £*+ H  + -  l r w -  u > p-\ £= i  t = r , + i  /

So the random walk element in X t in each of the sub-samples, has the continuous tim e limits:

(T u i

^  C\V(u) .  u < p
t=  I

/  n  [t « i \

r - i  I D r c ^ - t  + D  ^  D T C W (p )  + D ( \ Y ( u ) - \ V ( p ) ) .  u >  p. (2.4.3)
y  £=1 £ = r ,  +  i J

Equation (2.4.3) has an important implication for unit root tests, in processes with structural 

changes. Standard Dickey-Fuller type distributions, such as / (dB) B'  [J  B B 'd u ] ~ 1 f  B  (dB)'  do 

not define the asym ptotic distribution in this situation, because the Gaussian term  D rC U '[(p ). 

that comes from the initial values, does not disappear. A unit root test based on observation after a 

structural change will therefore involve a term  such asf  (dB) (B + Z )' [ J (B  +  Z ) ( B  -f- Z) 'du ] 1 f  (B-f 

Z) (d B ) ' . However, this problem does not occur if a constant (restricted to the cointegration space 

or unrestricted) is included as regressor, see C hapter 4.
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From the Granger representation we find that

t - i / 2
C\V (u )l(u<p)

[DTCWxip) + D (W (u )  -  \V{p))\ l (u>p)

since the other terms vanish in probability. Let

B  =
J ,  0

0  do

let B±_ be the orthogonal complement to B . i.e. B'± B  = 0 and let B±  =  Bt_{B\ B±)  1. We define

G(u)  =
Gdu)

V  Gl(u)
=  B\

CW (u )l(u<p)

^  [D V C \\\{p) + D{\V(u) -  ir(p ))] l (u>p) )

and by the continuous mapping theorem we have with u = t / T  that

(
T ~ 2  £  S 1

t =  I

f 0P G l (u)Gl (u)du

'Y[Tu]l(u<p) (  v  - \A[Tu]l(u<p)

y -^[Tu]l(u>p) J
f  G(u)G(u)du  

Jo

(  rP  .

\ 0 / ;  G2(u)G2(u)du

W ith this notation, the asymptotic results for unrestricted parameter estimates (G — I  and H  = I) 

of .4. B. C. and say ,4U. B u. Cu, and f2u(t), follows from Johansen (1988. lemma 13.1. 13.2). 

The results are that (a normalized) B u is super consistent, with a mixed Gaussian asymptotic 

distribution, and that .4U is asymptotically normal. Further it also follows th a t the LR test of 

some over identifying restrictions, have a x 2  asymptotic distribution.

Consistency is not affected by imposing valid restrictions, and the results for the restricted 

param eter estim ates given by expanding the normal equations. Assume for simplicity that f2(t) is
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constant, then

’ T ■
vec(B) =  H H ' A ' Q - ' A  x  T - z ^ Z u Z'u

t=i
H

- t

I
x H '  V \ - e c ( r - l Z u (A S 'Z u  -h (C -  C ) Z 2t 4- z t ) 'Q - u A^

t= l

vec (B)  + H H' A ' f r l A > ; Y , z uZ'u H
_

x H ' ^ r v e c ( Z lts'tn - l,A) +  op(l).

which bv the consistency of .4. C  and fl  shows that

T \ec(B  -  B) H H ' |.4 'Q ~l A x Bj_ J  G{u)G'(u)duB'± 

x tf 'v ec  ^  j  G (u)enVQ -l,A ^  .

H
- I

which is a mixed Gaussian distribution. Similarly

T l "2v e c ( A - A . C - C )  = G G'
B ' Z u Z[t B B 'Z itZ o t \

y Q ~ l G

t=i\ Z2tZ[tB Z2tZ'2t J

xG'vec { h - xT - Xl‘2 Y ^ £ t{Z[t B. Z'2t)^ .

- 1

which asymptotically has a Gaussian distribution. The case with a varying Off) leads to the same 

results, although the expressions have a more complicated structure.

From these results it follows by arguments similar to the ones of Johansen (1996, theorems 

13.7. 13.9). that the hkelihood ratio test has an asymptotically x 2 distribution, for hypotheses 

that can be formulated as Unear restrictions.
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2.5. E m pirical A n alysis  o f  th e  U S Term  S tru ctu re o f  In terest R ates

In this section we analyze the US term  structure using the structural change model we developed 

in Section 2.

2.5.1. T h e E xpectations H ypoth esis

A version of the term structure of interest rates is that the expected future spot rates equals 

the future rate plus a time-invariant term premium. We adopt the notation from Campbell. Lo. 

and Mackinlay (1997) and let pn,£ denote the log of the price of a  unit-par-value discount bond 

at date t, with n periods to maturity. The continuously compounded yield to maturity for an 

n period bond is defined as yn,t =  P n . t • and the one-period future rate  of return, earned 

from period f + n to f +  n -(- 1 . (known at time t) is given by 1 -+- Fn,t = Pn,t/Pn+i.t- such that 

f n . t  — I°g(l "b •f'n.i) =  P n . t  P n + l , t -

The expectations hypothesis0  states that

fn.t =  Et(yi,t + n) + An.

where Arl is the term premium. The restriction imposed by the expectations hypothesis is that 

the term premium does not depend on t. From the Fisher-Hicks relation ynt = a-1 f j t .

n = 1 . 2  and the identity Et (yi, t+j) = 0 = 1  Et(&yi,t+i) +  we obtain

n- 1  j
ynt — yit — a  1 ^  ~ 'y  ̂Et(Ayi ' t+t) +  L n. (2.5.1)

j= i i=i

where Ln = a - 1  Aj. This equation shows that if y lt is 1(1), such that the terms Aj/ii£

and n ~ l 52*1} £ f= i  E t(&Vl, £+I) are stationary0, then yrt£ must be integrated of order one and

'F o r  an  overview of th e  e x p ec ta tio n s  h y p o th esis  theo ry  and em pirical s tu d ie s  o f in te re s t ra te s , see Shiller (1990). 
f’T h r  s ta tio n a ritv  o f E t ( & y i . t+ j )  do cs n o t hold in general, but will hold for tim e-h o m o g en eo u s processes. In 

p a r tic u la r  it will hold for th e  vector au to reg ressiv e  process we consider in th is  p a p er.
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ynt and y lt are cointegrated with cointegration vector (1 .—1) as first analyzed by Campbell and 

Shiller (1987). Since the relationship will hold for any integer n. any pair of yields to m aturity 

will be cointegrated w ith cointegration vector (1 ,-1 ) . We shall call this implication the long-run 

implication of the expectations hypothesis. This is only one of several implications of the expec­

tations hypothesis. Equation (2.5.1) is the motivation for modelling interest rates as cointegrated 

processes, and illustrates the convenience of using this framework to test the long-run implication.

The implications of the expectations hypothesis are commonly rejected when tested on US term  

structure data: this is also the case for the long-run implication as concluded by Hail, Anderson, 

and Granger (1992), Engsted and Tanggaard (1994), Johnson (1994), and Pagan, Hall, and M artin 

(1996). Hall, Anderson, and Granger (1992) and Engsted and  Tanggaard (1994) attributed their 

rejection to the unstable period for interest rates between September 1979 and October 1982. when 

the Fed did not target short interest rates directly. This period is also known as the period with the 

nonborrowed reserves operating procedure. Pagan, Hall, and M artin (1996) gave another possible 

explanation for the rejection. They extended the cointegration model with a parameter. 7 . for 

the elasticity of volatility w ith respect to the level of the shortest interest rate. W ith simulations, 

they showed that hypothesis tests on cointegration vectors over-reject as 7  increases, and found 

the effect to be substantial as 7  increases beyond 0.5.

Whereas the expectations hypothesis has been rejected by most studies of US data (see Shiller 

(1990) for an overview), the results from studies of the term structure  in other countries are mixed. 

Hardouveiis (1994) rejected the expectations hypothesis in 5 of the G7 countries. Cuthbertson 

(1996) found some evidence in favor of the expectations hypothesis using UK interbank rates and 

Engsted and Tanggaard (1995) found the long-run implications to hold for Danish data  in the 

period where the central bank targeted interest rates.
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2.5.2. S tru ctu ra l C hanges in th e  US Term  S tru ctu re  o f  Interest R ates

There are several studies tha t find evidence of a structural change in the US term structure of 

interest rates. Hamilton (1988) applied a Markov switching model to 3- and 12-month T-bills, 

and the model detected a  period that precisely coincides with the period with the nonborrowed 

reserves operating procedure as a  separate regime. H. Hansen and Johansen (1999) have developed 

a recursive estim ation of the cointegrated vector autoregressive model to detect structural changes. 

Their application to US data  also indicates structural changes around the fall of 1979 and the fall 

of 1982.

Structural changes of US interest rates have also been analyzed within the framework of con­

tinuous time models. Chan. Karolyi, Longstaff. and Sanders (1992) estimated a diffusion process 

for the short term  interest rate  and rejected a structural shift in October 1979, and then estim ated 

the elasticity of volatility to be 1.5. However Bliss and Smith (1998) found significant structural 

changes when the possibility of a structural shift by the end of 1982 is included in the analysis. 

They found evidence of structural changes in both 1979 as well as in 1982 when the Fed reversed 

to target the Fed funds rate. After these changes are accounted for, an elasticity as low as 0.5 is 

consistent with their data.

These studies have shown that the US term structure has had structural changes, and it is not 

surprising tha t these changes affect point estimates and inference.

Elliott (1998b) showed how standard inference can be misleading when there is a  root close 

to unity. Using this local-to-unity approach, Lanne (1999) rejected the expectation hypothesis for 

US data  in the period 1952:1-1991:2. However, after accounting for a structural change in 1979:10 

the hypothesis could not be rejected.

In this paper, interest rates are modelled as / ( l )  variab les'. The fact that nominal interest rates 

cannot be negative and other considerations are strong arguments against interest rates being / ( l )

A it-S a h a lia  (199G) found  th e  sh o r t  in te rest ra te s  to  beh av e  its an  / ( l )  process w ithin th e  h a n d  [4%. 18%] an ti a  
th eo re tica l m o d el in w hich in te res t ra te s  a re  sim ilar to  a  ra n d o m  walk is Riven by D enHnnn (1995).
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forever. Nevertheless, interest rates may very well be / ( l )  in a particular sample period. Whenever 

this is the case, modelling interest rates as / ( l )  is equivalent to invoking asymptotic results to 

finite samples. The parallel is that the sample in which interest rates behaved as / ( l )  need to be 

long enough for asymptotic results of the 1(1) model to be valid, and that any constraint that 

may prevent interest rates from being 1(1) has had no relevance in the sample period analyzed. 

See Pagan. Hall, and M artin (1996) for another argument on this matter.

2.5.3. D ata

The term structure data  were extracted from the Bliss data 8 that are interpolated by the McCul- 

loch cubic-spline method. This is the same technique as the one used to create the widely used 

data sets from McCulloch (1990) and McCulloch and Kwon (1993). However the Bliss da ta  differs 

by not being tax adjusted.

The da ta  used in the empirical analysis are monthly US zero-coupon yields with maturities 

of 1. 3. 6 . 9. 12. 60. and 84 months9  within the sample period 1970:1 -  1995:12. The yields are 

stacked in the vector A't , ordered such that the first element in X£ is the 1-month interest rate at 

time t. The most general model can be expressed as

k  — I

A X , =  a ( t ) i 3 ( t ) ' X t - i  +  Y i  r .A -V £_, +  fi(t) +  s t .
1 = 1

where a(f). 3(t)  and p(t)  are piecewise constant with two change points: in 1979:10 and in 1982:10. 

To avoid a deterministic trend in the yields, the constant is restricted by /*(f) — a(t)p(t ).  so the 

model can be rewritten as

fc-i
AX, = o(()d(f)"A7_l + Y  F i& X t - i  + s t .

t=l

'T h e  d a ta  wen* p rov ided  to  me by D avid Marshal!* (see  B eknert. H odrick , and  M arshal! (1997)). In te rested  
p a rties  a re  re fe rred  to  R o b e rt R. Bliss: rb liss« ;gsbalum .uchicago .edu .

'L o n g er m a tu r i t ie s  w ere n o t selected  because precise e s t im a te  o f  those  are  difficult to  o b ta in  by in te rp o la tio n
t«rchnupies. See B liss (1997)
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where X ?  = (X't . 1) and 3 "  = (0(t ) ' , p(t)).

We may normalize the cointegration relations by

- 1  0 0

0  - 1
3 { t y (2.5.2)

0 - I

\  Pl.t P-2,t

Since these relations define the stationary relations, the long-run implications of the expectations

hypothesis -  that the spreads yn,t — yi.t are stationary -  can be formulated as the parameter 

restrictions 3 U t = • • ■ = 3 lr t =  1.

The individual cointegration relations in equation (2.5.2) can be w ritten as

equation (2.5.2). The Granger representation shows that E(bnity l t — yn-£ -t- pn t ) = 0. so pnt  can

be interpreted as the estimated term premia when bn<l is set to unity.

2.5 .4 . E stim ation  R esults

The lag length was set to two using Akaike's and Hannan-Quinn’s information criteria. The 

cointegration rank is set at six (r =  6 ) as predicted by the expectations hypothesis and as the

existing literature has supported. No formal test was applied for this selection.

Table 2.5.1 shows that the covariance m atrix clearly differs between the three subsamples. The 

variance estimates from the three subsamples are given in Table 2.5.2.

bn.tyi.t ~  Vn.t +  Pn.f n -  3 .6.9.12.60.84. (2.5.3)

where the maturities n = 3. 6 . 9. 12. 60. 84 and bn-t correspond to i = 1 r and ^ lt £ in
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A X t -  a ( t ) 3 ' ( t y x t'_ l -  r i A X t -

Model max log L(a(t) ,  /3*(£). IV  Q(£)) Degrees of freedom L R (M t|M0)
(p* v a lu e )

M0: fi(<) 2009.25 295 -

M l : n 1 = n 3 1824.94 270 368.61
(0.0000)

M2: Hi =  f >2  =  D3  1631.77 239 754.96
(0.0000)

Tabic 2.5.1: The maximum value of the likelihood function for the model with changing reduced 
rank parameters, and changing covariance Qt .

The Estim ated Covariance Matrices. Q(t)

1970:3-1979:9 D i =

1979:10-1982:10 P .2 =

1982:11-1995:12 0 3 =

/ 0.30 0.28 0.25 0 . 2 2 0.14 0 . 1 0 0.09 \
0.28 0.27 0.25 0 . 2 2 0.15 0 . 1 1 0 . 1 0

0.25 0.25 0.25 0.23 0.17 0 . 1 2 0 . 1 1

0 . 2 2 0 . 2 2 0.23 0.23 0.17 0.13 0 . 1 1

0.14 0.15 0.17 0.17 0.15 0 . 1 2 0 . 1 1

0 . 1 0 0 . 1 1 0 . 1 2 0.13 0 . 1 2 0 . 1 0 0.09
V 0.09 0 . 1 0 0 . 1 1 0 . 1 1 0 . 1 1 0.09 0.08 /

/ 1.75 1 . 6 8 1.51 1.28 0.92 0.63 0.54 \
1 . 6 8 1.70 1.58 1.33 0.97 0 . 6 8 0.59
1.51 1.58 1.50 1.30 0.97 0.69 0.61
1.28 1.33 1.30 1.18 0.90 0.65 0.57
0.92 0.97 0.97 0.90 0.72 0.54 0.48
0.63 0 . 6 8 0.69 0.65 0.54 0.43 0.39

V 0.54 0.59 0.61 0.57 0.48 0.39 0.35 /

/ 0 . 1 0 0.09 0.08 0.07 0.07 0.06 0.05 \
0.09 0.09 0.09 0.09 0.09 0.08 0.07
0.08 0.09 0 . 1 0 0 . 1 1 0 . 1 1 0 . 1 0 0.09
0.07 0.09 0 . 1 1 0 . 1 2 0 . 1 2 0 . 1 1 0 . 1 1

0.07 0.09 0 . 1 1 0 . 1 2 0.13 0.13 0 . 1 2

0.06 0.08 0 . 1 0 0 . 1 1 0.13 0.13 0.13
V 0.05 0.07 0.09 0 . 1 1 0 . 1 2 0.13 0 . 1 2 /

Table 2.5.2: The estimated covariance matrices, Clj. j  — 1.2.3. from the most general change 
model.
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It is not surprising that the variance of interest rates (see Table 2.5.2) were much higher in 

the 1979-1982 subsample when the Fed did not target interest rates directly. One conclusion 

from Table 2.5.1 is th a t the difference between the variance of interest rates in the first and third 

subsample is significant. From Table 2.5.2 it can be seen that the major difference between the 

covariance m atrix in the first and last subsample is the reduced volatility of the interest rates with 

shorter maturities. This phenomenon may be explained by the less frequent adjustments of the 

Fed's target of the Fed's fund rate in the most recent sample, along with fact that the Fed now 

publicly announces what their target is.

Six models with different parameter restrictions were estim ated10. The estimations results are 

given in Tables 2.5.3 and 2.5.4.

Model 1 in Table 2.5.3 is the most general model, where the parameters are left unrestricted. 

This model can be represented by the equation

AA't =  a ( t ) [ d ( 0 % _ i  + p(t)I + r iA .Y (_ , + s t . t = l  T.

-zt ~  . V ( 0 . O ( t ) ) .

where the param eters are constant within each subsample, i.e. a(f) =  for t <  1979:09. a(f) =  c*2 

for 1979:10 < t <  1982:10 and a(t) = 0 3  for t > 1982:11. and similarly for 3{t). p(t) and f1(t). 

The long-run implication of the expectations hypothesis requires 6 n =  1 for n = 3. 6 . 9. 12. 60. 

and 84. The point estimates differ from unity by being systematically too small in the two first 

subsamples and too large in the last subsample.

In Model 2 the long-run implication of the expectations hypothesis is imposed as the parameter 

restriction 6 n =  1 for all n in all subsamples, whereas term  premia (p„) adjustment coefficients 

(a ,, i = 1.2.3) as well as the covariance may differ across subsamples. This model can be written

I0T h e  em pirica l an a ly s is  w as perfo rm ed  in G auss. C ode  an d  d o c u m e n ta tio n  can  be o b ta in ed  by co n ta c tin g  th e  
a u th o r.
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1: Unrestricted Change Model 
q(£), 3(£), p {t) ,  S li t)

2 log L 
4018.49

# /
295

LR p-value

n 3 6 9 12 60 84
1970:3-1979:9 bn 0.9831 0.9767 0.9162 0.7473 0.6154 0.5947

Pn 0.3634 0.6356 1.1666 2.4113 3.4517 3.6640
1979:10-1982:10 bn 0.9234 0.8455 0.7716 0.7378 0.7179 0.6765

Pn 1.4726 2.5655 3.5156 3.8391 3.9931 4.4702
1982:11-1995:12 bn 1.0746 1.1391 1.2596 1.5328 1.7390 1.7989

Pn -0.2384 -0.4607 -0.9011 -2.0401 -2.8354 -3.0585

2: Expectations Hypothesis 
q(£), .3(0 =  3 ,  p i t ) .  S li t)

2 log L
3989.58

# /
277

LR
28.91

p-value 
0.0495

n 3 6 9 12 60 84
1970:3-1979:9 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pn 0.2620 0.4935 0.6592 0.8935 1.1475 1.2357
1979:10-1982:10 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pn 0.6309 0.8628 0.9917 0.9370 0.8637 0.8800
1982:11-1995:12 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pn 0.2106 0.3694 0.6307 1.0520 1.3919 1.5010

3: Constant a± &: Expectations Hypothesis 2 log L # / LR p-value
a ( t )  =  q o ( ( ) ,  ,3(0 =  .3, p ( 0 ,  f t ( 0 3978.44 265 40.05 0.1038

n 3 6 9 12 60 84
1970:3-1979:9 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pn 0.2644 0.4999 0.6748 0.9221 1.1861 1.2753
1979:10-1982:10 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pn 0.6529 0.9089 1.0495 0.9896 0.9065 0.9281
1982:11-1995:12 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pn 0.2123 0.3753 0.6523 1.1248 1.5229 1.6487

4: Constant a  & 0  EH. p( t )  may change. 2 log L # / LR p-value
q ( 0  =  3(0  = 3 .  Pi t ) . n (0 3784.01 199 234.48 0.0000

n 3 6 9 12 60 84
1970:3-1979:9 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pn 0.2701 0.5061 0.6798 0.93S1 1.2343 1.3332
1979:10-1982:10 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pn 0.5850 0.8015 0.9598 1.2261 1.4309 1.5107
19S2:11-1995:12 bn 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pn 0.2182 0.3826 0.6621 1.1599 1.5995 l."405

Table 2.5.3: Estimation results: For each model we report the maximum value of the likelihood 
function, the model’s degrees of freedom and the test statistic (tested against the most general 
model) with the correspondings p-value. The cointegration parameters bn and term premia p n 
from the cointegration relations — yn,t +  pn are reported for each model and subsample.
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AAT£ =  a(t) [ ffX t - 1  +  p{t)] +  T iA X ,-!  + S t .  t = 1 T.

~ iV(o.n(t)).

where 3 has the structure required by the long-run implications. The likelihood ratio test of Model 

2 against Model 1 , has a p-value of 4.95%. This shows that there is not strong evidence against 

the long-run implication once structural changes in the param eters are accounted for.

Model 3 is a more parsimonious model where in addition to the restrictions in Model 2. the

adjustm ent coefficients are required to span the same subspace. ct(t) = a  -o( t ). where o(t) is a full

rank r  x r matrix. This model can be written as

A X t = ao(t)  [ i fXt -x  +  p{t)\ +  r i A X t - i  + s t . t = 1 T.

st ~  .V (0.fi(0).

The restriction implies that the orthogonal complement to a  is constant, i.e. a x (0  =  o_l- The 

different strength of the adjustments between the three subsamples are expressed in terms of the 

m atrix o(t).

Recall the Granger representation from equations (2.4.1) and (2.4.2), and here extended with 

a third subsample:

t
Xt = C ] T s t + O p(l). t = 1  Tx.

1 = 1

t r,
X t = D ^ 2  ^ + O r C ^ c - , r O p ( l )  * =  Ti +  l  To.

i = T i  +  l  t  =  I

t 7% r,
Xt  =  E  Y i  + D  5 ^  St +  E T £ » r C ^ £ ,  +  Op(l).

1 = 72 + 1 i = 1 = 1

t = T-2 + 1.........T.
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An implication of the constancy of Qx and 3 and Ti is th a t the loading matrix is constant, i.e. 

C  =  D = E  — 3±_ (a'± r 3 ± ) ~ l o'x . This simplifies the Granger representation to  a single equation 

given by
t

Xt  = C '* T s t + Op( 1). £ = 1 ...........T.
1=1

using the fact that C T C  =  C.

The term  o'x *s ca^ e<i  the common stochastic trend in X t . because it describes the

random walk element of X t , and C a±  defines how the stochastic trend is loaded into the process 

X t . (note Ca±a'j_ = C)- Thus the non-rejection of Model 3 (a p-value of 10.385c when tested 

against Model 1) can be interpreted as follows: The long-run implications are consistent with the 

data and we cannot reject that the common stochastic trend has been a constant linear combination 

of £(. and we cannot reject that the loading of the common stochastic trend has been constant. 

The non-constancy of the common stochastic trend comes from the changing variance of 

The last model in Table 2.5.3. Model 4. can be expressed as

X X t  — o: [d A£_i -+- p(£)] +  r i  AATt_i £ =  1.........T.

In this model the adjustm ent coefficients have the same strength in the three subsamples. This is 

equivalent to the additional restriction: o(t) = o  on Model 3. This model is clearly inconsistent 

with the term  structure data. The fact that the strength of the adjustments are non-constant is 

not puzzling, since the  changes appear along with changes in volatility and term premia.

Thus, we find the term  structure to  have had structural changes in the covariance f i(t) and 

the term premia p(t) along with changes in the strength of the adjustments to dis-equilibria in the 

cointegration relations. However fundamentals such as the common stochastic trend and stable 

relationships between interest rates have remained relatively unchanged in the sample analyzed. 

These findings are consistent with many of the suggestions that have been offered to explain
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the rejection of the expectations hypothesis. The monetary changes in the fall of 1979 and the fall 

of 1982 had an im portant impact on the stochastic properties of interest rates. If the structural 

changes are not accounted for, the result can be incorrect inference, and a  possible rejection of a  

true hypothesis, as was suggested by Hall, Anderson, and Granger (1992) and Engsted and Tang­

gaard (1994). The suggestion by Tzavalis and Wickens (1997) of a time varying term premium, is 

also consistent with the results, since we find p(t) to vary as the volatility of interest rates changes. 

Finally, my finding of a  changing variance is likely to distort hypothesis testing if not accounted 

for. which is similar to the volatility effect found by Pagan, Hall, and Martin (1996).

5: No Structural Changes
q(£) — a , 3(t) =  3- p(t) -  P, f i (0  =  n

2 log L 
2852

# /
131

LR p-value

n 3 6 
1970:3-1995:12 6„ 1.0390 1.0417

p„ 0.0011 0.1680

9
1.0520
0.2951

12
1.0529
0.6209

60
1.0239
1.1478

84
1.0191
1.2875

6: No Changes &: E xpectations Hypothesis 
a(t) = a. 3(t) =  H6.  p(t) =  p. Q(£) =  fl

2 log L 
2825

# /
125

c n
26.84

p-value 
0.0002

n 3 6 
1970:3-1995:12 6„ 1.0000 1.0000 

pn 0.2719 0.4570

9
1.0000
0.6561

12
1.0000
0.9S88

60
1.0000
1.3148

S4
1.0000
1.4215

Table 2.5.4: Estimation results. Testing the expectations hypothesis in the cointegrated VAR 
without structural changes. Note tha t the p-value is invalid because model 5 is strongly rejected 
against model 1 .

The fifth and sixth models in Table 2.5.4 replicate previous empirical studies of the US term 

structure, by having constant parameters. Model 5 is the unrestricted model (with constant 

param eters) and Model 6  is the submodel in wliich the long-run implication of the expectations 

hypothesis is imposed. A test of Model 6  against Model 5 would have lead to a weak rejection of 

the expectations hypothesis, exactly as previous studies have concluded. Of course, this inference 

is invalid because model 5 is inconsistent with the data. The LR test statistic of Model 5 against 

Model 1 is 1166. Its distribution is asymptotically \ 2 "'ith 164 degrees of freedom, and is therefore 

clearly rejected.
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2.6. C onclusion

This paper shows how structural changes in cointegrated processes can be formulated in a uni­

fied framework, using the familiar vector autoregressive model. It is possible to formulate and 

test various structural changes as simple parameter restrictions in this framework. Moreover, the 

parameters can be estim ated under these restrictions with the new generalized reduced rank regres­

sion technique. This technique is also applicable to estimation problems unrelated to structural 

changes.

I derived the likelihood ratio test for structural changes occurring at known points in time, and 

showed that it is asymptotically y 2. Moreover, it was shown how hypotheses can be tested, when 

the maintained hypothesis is presence of structural changes. I derived the asymptotic distributions 

of the parameter estimates and likelihood ratio tests. Similar to the standard model without struc­

tural changes, the estim ate of the cointegration relations is super-consistent and asymptotically 

mixed Gaussian, and the LR statistic is asymptotically y 2.

This combination of cointegration and structural changes may provide a fruitful framework 

for many economic questions of interest. In this paper I analyzed the US term structure and 

found evidence of structural changes that coincide with the Fed's policy changes in September 

1979 and October 1982. Contrary to previous studies (see Hall. Anderson, and Granger (1992). 

Engsted and Tanggaard (1994), or Pagan, Hall, and M artin (1996)) I cannot reject the long-run 

implications of the expectations hypothesis, once these structural changes are accounted for. In 

fact, a parsimonious model is consistent with the data. This model has a different covariance 

structure in the three monetary' regimes, and along with changes in the covariance matrix, only 

the term premia and the strength of adjustment coefficients changes.

In this paper, the cointegration rank was taken as given. Although this is reasonable when 

interest rates are analyzed, this need not always be the case. A formal test to determine the rank 

of cointegrated processes is derived in Chapter 4..
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A p p en d ix  B: P roofs

B .l .  A lgebra ic  T reatm ent o f  th e  R educed  R ank R egression

Before I give the  proofs of Theorem 2.3.1 I derive some intermediate results. The following lemma 

is a consequence of Poincare’s theorem, however, a  direct proof is presented here.

L e m m a  B . l .  The function g(y) =  \y '\y \  /  \y'y\ where y is a p x r  matrix. A =  d iag (A i, Ap)

and Ai > A2  >  • ■ • >  Ap > 0 has maximum value A, which is attained with y equal to the 

first r unit vectors, that is y = (Ir. 0 rxp_ r )'.

P ro o f. Let J  be an index set J  C {1 p} of cardinality r. and define the r  x r  matrices yj

and A j  by y j  — .... r and A j  -  { A .j^ jg ./. So if p =  3. r = 2 and J  = {1.2} we would

( Al ° )
 ̂ 0 A2  )

Next, let ©p denote the set of all subsets of {1 p} containing exactly r  different elements

(cardinality r) . Below, I prove that

|y'Ai/| =  ^ 2  W j k j y A  = W j y j \ =  5 Z l ^ i 2 n >e./A«- (B-1)
J€Z-

So g{y) =  \y'hy\/ \y'y\  = \yj\2 ^i€J^i/ 'Hj^p- \ y j \2 a convex combination over the

elements in ©p with values given by n ,GjA,, with the largest element being nT= 1 corresponding

to J  =  { 1  r} . This value can be obtained with y  =  {Ir .Orxp-rY  which therefore maximizes

the function <?(«/)•

The identity (B .l) is proved as follows. The second and third equality follows trivially from 

\AB\ = |.4j \B\ for matrices of proper dimensions, whereas the first equality is showed by induction

h av e  y j  =
y  11 i/12

V i/21 I/22

a n d  A j
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below. The equality trivially holds for r  = 1 or p = r. So the scheme

p \ r 1 2 3 4

1 S - - -

2 / / - -

3 S ? -

4 s 9 9

shows tha t the equality can be proven by showing it holds for cell (p. r) when it is assume th a t it 

holds for cell {p — 1. r  — 1 ). say assumption (Al), and for cell (j> — 1. r). say assumption (.42).

Define A =  diag(A i   Ap_t ) and consider first the case where the last row of y is a zero-row

(ypi  ypr) — (0.........0). Define in this case y = {i/ij}»= l  P- i ,  that is y without the zero-row.

By applying assumption (.42) we have the relation

|y'A(/| -  \ y ' \ y \ =  ^  \y'jyj\ ■ I^eyA;

=  \y'jyj\ ’ nigjAi-t- ^  \y'jyj\ n l€yAi =  \y'jyj\ - rii€yAj
JeZ',p€J
V-------------- ---------------- -

=0

which proves the lemma in this case.

Next assume that {ypl ........ yp*.) ^  0, and choose a full rank r  xr-m atrix  Q. so that (yp l..........t/pr)Q

= (0........0.1) Then define the p  — 1 x r  — 1 matrix z as the first r  — 1 columns of yQ.  Then it

holds that

iq iV aj/ i = Q ' y k y Q  +
Or— lxi— 1 0

=  jQ 'y 'A i/Q l +  Ap. (B.2)
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Applying assumption (.42) on the first term of (B.2) we get

60

| Q V A j / < ? |  =  i q i 2 Y  \y'j^jyj\ = \Q\2 Y \y'j*jyj\- < B - 3 )

N'ote that for J  6  ®p_i we have that

\zj\ =
z j  0  

0  1

=  \yjQ\  - and Ap Ay = |A j|

.vhere J  — {J  U {p}} € ©p. So applying assumption (.41) to the second term  of (B.2) we have

|i 'A i | Ap =  Ap =  |Q | 2  Y  \ y ' j ^ y j \ -  

Combining the identities (B.2), (B.3), and (B.4) we have shown

(B.4)

I Q i V A f f l  =  | Q |2 Y  \v'j*jyj\ +  K ? |2 Y  I ^ A y t / y l  =  \Q\2 Y  1*0 ^ - / 1
J € D -  p<£J Jez ' .pzj

which completes the proof. ■

In the proof for Lemma B .l we obtained a representation for |j/'A i/| which we formulate as a 

separate corollary.

C o ro lla ry  B .2 . Let A be a real p x p diagonal matrix, and y  a real p x r  matrix, where r < p. 

Then with the definitions above, ire have that

l y ' A y i  =  Y  \y'jAjyj\ = Y  \y'jyj\n'eJAi = Y  l ^ i 2 n > € j A , .
Jei J€2-„

L em m a B .3 . Let x be a p x r  matrix. M  and N  be p x p symmetric matrices. M  positive 

semi-definite and  iV positive definite.
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The function / ( x )  =  |x '.\/x | /  |x'iVx| has n [= i 3 5  Its maximum with is obtained for x  =

(i-’i  iv) where i 'i  vr are eigenvectors corresponding to the r largest eigen\ralues. Ai Ar

from the eigenvalue problem  |AA' — M | =  0.

P ro o f. The m atrix j  is symmetric positive semi-definite, hence we can diagonalize

it as .Y ~ iM X ~ i  = QAQ' where QQ‘ = I . A =  d iag(A i,. . . .  Ap) and At > A2  >  • • • >  Ap > 0. By

defining V = .V~ i Q  and y =  V - l x. we have that |x 'A /x | /  |xLVx| =  \y'Ay\ /  \y'y\- According to

Lemma B.l this is maximized by y = (7r .O)'. so / (x )  is maximized by x =  Vy = N ~ ^ Q y .  H  

P ro o f  o f T h e o re m  2.3.1.

The likelihood function is given by

T
L ( a . 3 . * . n )  =

t = 1

X exp -  a & Z u  ~  * Z2t) '9 .- l {Z0t -  a 3 'Z u -  <Z2t)

The estimate of the parameters are found by maximization of the likelihood function, or equiv­

alently by maximization of the logarithm of the hkelihood function

log L ( a . 3 . * . Q )  = - | | O j _ | l o g ( 2 -)*

1 T
-  o -  a3'z « -  * z 2ty n - l (zQt -  0.3'Zu -  * z 2t).

~ «=i

The maximization is done in three steps. First, we maximize with respect to <F taking q  and 

3  as given, then with respect to a  and fl taking 3  as given, and finally with respect to 3.

The estimate of <F. given a  and 3. is found by regressing (Zot -  a.3'Z\t ) on Z u .  with the 

Gaussian error term, the estimate is found by OLS

C (q. 3) =  .U0 2 A/2 2 l -  * 3 ’M x2M n ■ (B.5)
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where .\[tJ =  T  1 5Z«=i ZitZ j t . The concentrated likelihood function is given by

T

log L(a. 3. Q) =  - I |n |  -  £log(27r)p -  l ^ R o t  ~ aS'RuYQ-'diat  -  *3'Ru).
~ " t=i

where the auxiliary residuals (Zot and Z \ t corrected for Zo£) are given by Rqi — Zql — Z?t

and R\t  — Z\t  *1^1 2 ^ 2 2  ^ 2 t ‘

Taking 3  as given, the estimates of a  and $1 are given by

a{3) = S o i3 (3 'Sn 3 ) - '  (B.6 )

=  Soo -S o iS C S 'S nS rV S 'S io - (B.7)

again using that the errors are Gaussian.

W hat remains is to maximize the concentrated likelihood function with respect to  3. Since

r
r _ l  H («oC  -  W W R u ) '  ( n ( 3 ) ) - 1 (Ret -  a (3 )3 'R l t ) = I.

i -  1

the concentrated likelihood is given by

L(3)  =  ((2T)p |f i(d ) |) “ ^ exp ( - ^ p )  =  ( ( 2 Tre)p |o (J ) | ) “ ^ .

So maximizing the hkelihood function is equivalent to minimizing

10(5)1 =  |Soo -  SordCS'SnSr^Sml = |Soo|^ 5n Tj?1°5o«l5oi)t31.
15 SuP l

which is solved by choosing the r  smallest eigenvalues of |S u p  —(Sn — SioS^ 1 Soi )|. or be defining 

A = 1 — p. choosing the r largest eigenvalues of \ S u p  — SiqS^/Soi|. which is identical to solve
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max j  |J <S[ j 's '"'- Lemma B.3 the estim ator is given by

3 -  {iii,  tv)-

where A, and i\ are the eigenvalues and eigenvectors to the problem

|ASu — SioStx/Soil =  0. 

ordered such th a t Ai > \ 2 >  - . .  >  Ap, and we find

r

10^)1 =  1 5 0 0 1 ^ ‘ A.)- 
1 = 1

- r
Since the eigenvectors are normalized by (£’i  i pY S \ i( i 'i  vp) — I .  we have 3 S n 3  =  I.

such that (B.6 ) and (B.7) reduces to (2.3.3) and (2.3.4). By inserting these estimates into (B.5) 

we find (2.3.5). I

B.2. A lgebraic T reatm ent o f  th e  G eneralized  R educed R ank R egression

Before we can formulate the general estimation result we need some additional notation. Define

Zq — (Z qi Z qt), Z i — ( Z n .  Z \ t )- Z2 = {Z2i  Z-i t ). and E  = ( r i  s r)-  so that

Model 2.2.3 can be expressed as

Zq = A B 'Z i  4 - C Z 2 4  E. (B.8 )

Xext define

Z 1 B2  =  {{Z[B.Z'2) ' * I P)).

Zm  =  { Z [ y . A ) K Px,r .
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where A'Pl >r is the commutation m atrix, uniquely defined by KPl -rvec(S) =  vec(B ') for any pi x r  

m atrix B. Thus K Pl r is a p ir  x p xr m atrix consisting of zeros and ones.

Finally let s =  vec(£i £7 -) and set

E =  var(£),

which is block diagonal under Assumption 2.2.1. The p x p  matrices in the diagonal of E  are given

by Q(f)- t -  1  T. formally Ep(£_ i)+i.p(t-i)-rj =  for i. j  =  1 .........p and t = 1 ........ T.

Hence E - 1  is a block diagonal m atrix  with Q (t) _ 1  as diagonal matrices, t =  1  T.

L em m a B.4. W ith the definitions above, we have the relations:

z \ A z - l z l A  =  ^ [ /I 'n ^ -U x z u z ; ,] .
t =  1

T

Z'[ 4 E _ 1  vec(Z0  -  C Z2) =  £  vec (Z i£(Z0£ -  CZ2 £) 'n ( t) - 1' A) .

B 'Z UZ'UB B 'Z u Zf2t

t=  1

T

lZlB2 - E X n (« ) - 1

Z'1S2 E - ‘vec(Z0) -

Z2tZ[tB  Z2tZ!2t 

^ 2 v e c ( n ( t r lZ 0t(Z[t B.Z!2t) ) .

(B.9)

(B.10)

(B .ll)

(B.12)

I f  } is i.i.d. Gauss/an with covariance m atrix fi. the expressions sim plify to:

z ;.4 e - 1Z i .4 

Z'1 .4 E - 1vec(Z0 - C Z 2)

Z \b 2Z, vec (Zo) —

T  [-4 'Q 'l .4 X . \ / „ ]  . 

Tvec((Mio-Mo2C' )Q-lA) . 

B ' M u B  B 'M 12 

.1 /2 1  Z? A/ 2 2

r v e c ( ! r l ( i l /o i £ .A /o 2 ))

x n - I
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P ro o f- The identity

Z ' u E ^ Z m  =  K ,PjiA Z i X A ' ) X - 1( Z [ x A ) K Pl.r
T

=  R'r.pi £ ( Z „  *  A ' m t ) - l {Z'u  x  A ) K f
t =  I 

T

— ^r-.pi ^  ^(Zu X A Q(t) *)(Z1£ x  .4)APl>r 
£ = 1  

T

=  A'r.p, £ ( Z ItZ'lt :< .-W r 'A lA 'p ,.,-
£ =  l

T
=  ^(A'o(i)- ‘.4 v z uz;().

which proves (B.9). We used th a t Z \ t is a  column vector, and that we can write fi(t) 1 =  1 x fi(t)  1 

and the formula (.\/i X A/2 )(A/ 3  x  A/4) =  (AAA/ 3  X A/2 A/4) for matrices where the product A/jA/ 3 

and A/oA/ 4 are well defined.

Xext consider

Z'1 4 E _ Ivec(Zo -  CZ2) =  t fr,Pl ^ ( Z u x  .4 ')n (0 - 1  (Z0£ -  CZ-l t )
t=  1

r
=  AV.p, £  (Zlf .4'Q(t)-> )vec(Z04 -  CZ2,

£ , r = l

T

= A r,pt ^ 2  vec(A 'n (t ) - 1 ( z ot -  c z 2£) z ; t )
£,r=t

T

= vec (Z „(Z 0t -  C Z » ) 'f i ( 0 - 1 4 )  .

which proves (B.10). Equations (B .ll)  and (B.12) are proven similarly.

In the situation where {s£} is i.i.d.. we have fi(f ) - 1  =  —_ 1 • which proves the last four 

equations. ■
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P r o o f  o f  T heorem  2.3.2. Applying the vec operation to equation (B.8 ) yields the equation

vec(Zo) =  (Z [B  >j I p)\ec(A) + (Zo X Ip)vec(C) + £

= {{Z[B. Z'2) >5 Ip)\ vec(A.C) + s

= ZjB 2  Gxi) +  £.

For fixed values of B  and £  this is a  restricted GLS problem with the  well-known solution given 

by

v e c ( . 4 . C) = G [G'Z'lB2 E - l Z lB2 G ]~l G'Z'ig 2 S - l vec(Z 0) .

which by Lemma B.4 simplifies to (2.3.6).

Similarly for fixed .4. C . and £ . we have the equation

vec(Z0  -  C Z 2) = vec(A B 'Z l ) -i- £

=  (Z[ »  A)vec(By) +  £

=  (Z[ *  .4)A'plirvec(B) + s

=  Z j . 4 v e c ( B )  -p s .

This is also a restricted GLS problem, with the solution given by

vec(B) = H  [H'Z'lAZ ~ lZ lA H ]~ l H 'Z'lAY-~x™c{ZQ -  C Z 2).

which by Lemma B.4 reduces to (2.3.7). ■

P r o o f  o f C orollary 2.3.3. Follows from Theorem 2.3.2 and Lemma B.4. ■

P r o o f o f  Corollary 2.3.4. From Theorem 2.3.1, we obtain the equations for C  and Cl. Rather 

tha t handling the remaining estim ation for .4 and B  as a GLS problem we can obtain the likelihood
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equations directly. The concentrated log-likelihood function is (apart from a constant) given by

logL(A . B) = - ^ t r  { f i - l (Soo -  A B 'S l0  + A B 'S UB A ' -  S0 iS .4 ')}

holding Q fixed. So the derivatives of A  and B  in the directions a and b are given by

D a log L(A. B)(a) = T tr  {Q ~l (S0l -  A B 'S u )  B a '}

= r [ t r { n - lS0 1 B a'}  -  tr { Ip A iB 'S n B ) ^ )]

=  Tvec(a)' [ ( B 'x H * 1) vec (50 1 ) -  (B 'S tx B  x  /„) vec(A)] .

and

D q  log L(A. B)(b) = T t r { 9 . - l (S0 l - A B 'S n ) b A '}

=  T t i  {A 'Q ~ l (50i -  A B 'S n )  6 }

=  Tvec(b)' [(.4' x  5 10) vec (fi“ l ) -  ( .4 'n - I .4 X 5 U) vec(B)] .

using Theorem 3 from Magnus and Xeudecker (1988. Chapter 2). So equations (2.3.9) and (2.3.10) 

are the first order conditions. ■

P r o o f o f  C orollary 2.3.5. The result follows directly from Theorem 2.3.1 and Corollary 2.3.4. ■  
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Chapter 3

Testing for Structural Changes in Cointegrating Relations*

A bstract

This paper derives likelihood-ratio based tests for a structural change in the coin­

tegrating relations. When the potential change point, r .  is known, the likelihood ratio 

test. L R t ( t ) .  is shown to be asymptotically \ 2. Simulations show that the \ 2  distri­

bution is a reasonably good approximation in small samples, except when a stable root 

is "close” to unity.

The case with an unknown change point can be handled by statistics based on the 

sequence of tests: L R t ( t ) .  t  =  T q . . . .  . iq. Tests of this kind include the SupQ test, 

the MeanQ test, and the ExpQ test. Andrews and Ploberger (1994) showed that the 

MeanQ and ExpQ tests belong to a class of optimal tests in a  setting with stationary 

variables. In this setting with 1(1) variables, simulations show that these tests only 

dom inate the SupQ test against alternatives in the directions where the cointegration 

parameters are T'I/2 -consistent. In the directions where the cointegration parameters 

are T-consistcnt. none of the tests clearly dominates the others.

'T h i s  c h a p te r  h a s b en efitted  from  m an y  va luab le  com m ents from Jam es D . H am ilto n . All erro rs rem ain  my 
responsib ility . I th a n k  K evin S heppard  for prov id ing  co m p u te r power.

71
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3.1 . In trod u ction

It is now well known that structural changes affect tests to determine the extent of 1(0)- and / ( l ) -  

ness in time series, (see Perron (1990), Campos. Ericsson, and Hendry (1996), and Gregory and

B. E. Hansen (1996)). Because statistical inference and economic interpretations are associated 

with variables or relations being / ( 0 ) or / ( l ) ,  it is particularly im portant to model and test for 

structural changes in / ( l )  processes. For an ongoing discussion of this issue, see Nelson and Plosser 

(1982), Perron (1989), Zivot and Andrew’s (1992) and Lumsdaine and Papell (1997).

This paper investigates structural changes in the cointegrating relations formulated in the vec­

tor autoregressive model of Johansen (1988). This framework is convenient because the maximum 

likelihood estimators are easily derived under both the null (no structural changes) as well as under 

the alternative (a structural change at time r). When the potential change point is taken as given, 

the likelihood ratio test is shown to be asymptotically y2. When the change point is unknown, the 

testing problem is nonstandard, and I consider the SupQ, MeanQ, and ExpQ statistics, which are 

the likelihood ratio (LR) version of the tests proposed by B. E. Hansen (1992a). Andrews (1993). 

and Andrews and Ploberger (1994).

A Monte Carlo study shows that the small sample distributions o f these tests depends on 

nuisance parameters. Another Monte Carlo experiment show’s th a t the MeanQ and the ExpQ 

tests have the best power properties against alternatives in the direction where the estimator of the 

cointegration parameter is T 1 ̂ -consistent, similar to the optimality these tests have been proved 

to have in a setting with stationary regressors, (see Andrew’s and Ploberger (1994)). Surprisingly, 

none of the tests seem to dominate the others against alternatives in the directions where the 

estimator of the cointegration param eter is T-consistent.

The tests considered by Andrews (1993) and Andrews and Ploberger (1994) can be based on 

either the Wald test (SupW, MeanW. and ExpW), the Lagrange multiplier (LM) test (SupF. 

MeanF, and ExpF), or the likelihood ratio test, (SupQ, MeanQ, and ExpQ). B. E. Hansen (1992a) 

derived the SupF and MeanF statistics to test for parameter constancy in cointegrated regressions,
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and Seo (1998) considered the SupF, MeanF, and ExpF statistics in the cointegrated VAR model. 

A related test is the L  test by Nyblom (1989), extended to  linear models by B. E. Hansen (1992b), 

to regressions with 7(1) variables by B. E. Hansen (1992a), and to cointegrated processes b y  

Quintos (1997), Kuo (1998), and H. Hansen and Johansen (1999). H. Hansen and Johansen 

(1999) also proposed tests based on recursive estimation of eigenvalues that are associated with 

cointegration parameters. This approach has the advantage of reducing the dimension of the 

testing p r o b l e m ,  and is well suited for graphical presentation, as implemented in c a t s  in r a t s .  

( s e e  H. Hansen and Juselius (1995)).

All of these tests have the same null hypothesis, (no param eter changes), but differ in their 

alternative. The Sup-, Mean-, and Exp-statistics are designed to test against an alternative of 

one structural change, whereas the alternative of the L test is th a t the vector of parameters is a 

martingale.

The SupQ, MeanQ, and ExpQ statistics considered in this paper are similar to SupF. MeanF. 

and ExpF test for changes in the cointegrating relations considered by Seo (1998)1. But the tests in 

this paper differ by having power against both rotations/rescaling of the cointegration parameter 

as well as actual changes of the cointegration space, although the power in the former case is quite 

low when the sample size is small. In Seo (1998) the statistics are accompanied by tables with 

(asymptotic) critical values. One of the conclusions in this paper is th a t the tests have poor small 

sample properties for values of nuisance parameters that one is likely to encounter in economic 

time series. So in practice one should account for this bias rather than  using the asymptotic tables 

alone. Based on the simulations, I argue that the MeanQ test is the best test.

This paper is organized as follows. In Section 2, the statistical model is presented and the LR 

test for a known change point is derived and shown to have an asym ptotic \ 2  distribution. In 

Section 3 we evaluate the small sample properties with Monte Carlo simulations. Power properties

l O ne  of th e  m o tiv a tio n s for u sin g  th e  LM based tes ts  was a  claim  th a t  th e  LR  te s t is cum bersom e to  co m p u te ,
(see Seo (1998) page 226). H ow ever, its show n in the  n ex t sec tio n , th e  L R  te s t  for ch an g es in th e  co in teg ra tin g  
re la tio n s  is easy to  c o m p u te , so  in  p ra c tic e  th is  is not an  o b stacle .
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are studied in Section 4 and Section 5 contains concluding remarks. All proofs are contained in 

the appendix.

3.2. T h e S ta tis tic a l M od el

The extended model to  be estim ated is given by

where X t has dimension p. the error term St is a  sequence of i.i.d. Gaussian variables with mean 

zero and variance Cl. and the only modification to the standard  model is that

where a . J , .  and 32 are P x r matrices with full column rank.

We shall work under the null hypothesis that there are no structural changes in the process 

( =  j., = 3 ) and assume that the process is / ( l ) .  Specifically, we assume: (i) The characteristic 

polynomial .4(z) — / ( I  — z) — a  S ' z — ^ ( l  -  2)z ‘ has unit roots (|.4(1)| =  0) and all other

roots are outside the unit circle: (if) The number of unit roots equals p — r.

We define the orthogonal complements a±  and to be p x (p — r) matrices of full column 

rank that satisfy ofyo =  3'L3 — 0. and note that the assumptions above ensure that has

full rank, where V = I  — T,. (see Johansen (1996)).

3.2.1. E s tim a tio n

It is well known how to estim ate the model without changes. The model is reformulated as Zq< =

and 'k =  ( f i  f T - i . <&). and parameter estimates are found by solving the eigenvalue problem

fc-i
A.Yt = a0( t y x t- 1 +  -r <t>Dt + £ f  t =  1......... T

32 t  =  t  +  1 T.

ct3 'Z i t -r'ifZ2 t+£t the definitions Zot = A X (, Z \t — X t- \ .  Zo£ =  (AAf^!
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|A5n — 5io5 0 0 1 5oi| =  0 where moment matrices and auxiliary residuals are defined by — 

T Z L i  RitKjt* i J  =  0 , 1, Rot = Zot ~  M0 2 M ^ l Z2t and M tj = £  ^ L i  Z ttZ'Jt, i . j  =  0 , 1. 2 , 

(see Johansen (1996)). The generalized model with structural changes in the cointegrating relations 

can be estim ated with the same technique. The model is rewritten as

i t - i

i +  <a/32I( t>T)Xt-i  +  'y ' r tA X t- j  + $ D t  +  £t
i=l

fc- 1

=  a W . a j Z u  + ^ T r i A X t - t+ Q D t  + st. (3.2.1)
1 = 1

where / ( > are indicator functions and Z lt =  (I(t< r)X 't_ l . / ( t> r) AT('_ ,) '.  In the compact form the 

model is given by Zot — a B 'Z u  + 'kZ2t + £t- where B  = (f3\. 3'2)' ■

The maximum likelihood estimators for this model are also obtained by solving an eigenvalue 

problem. Define the moment matrices M \\ — ^  Y 'J - , Z \t Z[t . and A/ 12 =  T 5Zl=I Z u Z 2t, and 

the auxiliary residuals Rot =  Rot- Rit = Z \t — M \2 M ^ 2  Z2t and the moment matrices of these 

residuals as  S i j  =  E t = i  R i t R j u  i - j  =  0 - 1 -

T h e o rem  3 .2 .1 . The maximum likelihood estimators o f  the model 3.2.1 are given by

B = (v l ; . . . . v r ) (3.2.2)

d  =  S0 1 B  (3.2.3)

n  =  S o o - d d ' (3.2.4)

=  A/0 2 A/2I 1 -  aB'.\'rl2 .\f22l . (3.2.5)

where (tq  tv) are the eigem-ectors corresponding to the r largest eigem-alues At ...........Ar o f the

eigen\7ilue problem

|A 5 n  — S jo S qo^ o i I =  0 .
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The maximum value o f  the likelihood function is given by

r

L - V t (d. B. Cl) =  (2 - e )p !5oo| J J d  ~ *.)-
1= 1

A proof of the theorem can be found in Johansen (1988).

This enables us to get a simple expression for the likelihood ratio test of the hypothesis of a 

constant model. The first theorem is applicable in a  situation where a particular value for the 

cointegrating relations needs to be tested.

T h e o rem  3.2 .2 . The likelihood ratio test o f 3 i = d 2 = 3 0 where 30 is a known m atrix is 

asymptotically \ 2  with 2 pr — r2 degrees o f freedom.

In the more general case where no particular value for 3  is given, the following theorem is 

applicable.

T h e o rem  3.2 .3 . The L R t (t ) test o f 3 X = 32. tha t is no structural change at tim e r. is given by

L R t ( t ) =  -21og Q = T
r

X I  log ( l  -  ^ .)  -  log ( l  -  
.1 = 1

where A,, i = 1 r  are the r largest eigenvalues o f  |ASii — SioSq^SoiI =  0. The asymptotic

distribution o f the test is \ 2  with pr degrees o f freedom.

The proofs of the two theorems are given in the appendix.

3.3. T est for a  S tru ctu ral C hange w h en  th e  P oten tia l C h a n g e P o in t is 

U nknow n

When the timing of a  potential structural change is unknown, a more complicated situation arises, 

and the testing problem is nonstandard.
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The situation with a structural change after the unknown time r .  can be expressed in two 

ways. Either as

r- i
3{ t )  =  3  +  bT - l [ t  >  r ]

T = 1

where at most one of the parameters b \, . . .  , 6 7 - - 1 are non-zero, or as

3 ( t )  =  3  -f- bT - l [ f  >  r j ,

where r  is an unknown parameter, 1 <  r  <  T. that is only identified under the alternative. 

Problems of this nature ha\’e been analyzed by Andrews (1993). Andrews and Ploberger (1994), 

and B. E. Hansen (1996). The approach by Andrews and Ploberger (1994) is semi-Bavesian in 

the sense that it is based on a weighting function (prior), J{p). over the possible change points, 

expressed as a fraction of the sample size, p — t /T . For example, the uniform distribution on the 

interval [—o-~i]. 0  <  7To < tti < 1 . where to  =  [~oTj (ri =  [~[T]) corresponds to the smallest 

(largest) possible change point. Andrews and Ploberger show that the class of optimal tests is 

given by

Exp-Lrc  =  (1 +  c) ~ q /2  j  exp ^ Y ^ . Lr (p ) j  dJ(p). c e  (0. x ) .

where L t (p ) is either the Wald, Lagrange multiplier, or the likelihood ratio  test, for a structural 

change at r  = \pT\. The param eter c denotes how much weight is given to alternatives near the 

null, and q denotes the dimension of param eter space for the change param eter, (in this setting 

q -- pr).

The limits for c —* 0 and c —* oc (with suitable normalization) are given by 

M eanLr =  lim 2 ( E x p - L r c — 1 )/<= =  [  L t { p ) c I J ( p ) .
c“*0 J*o
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the "average L r  , and

E xpL r =  lim log((l +  c) q / 2 E x p - L r c )  = log( /  exp(LT (p )/2 )dJ(p).
c~°° J*

the "exponential average L r ” - It is worthwhile to  notice tha t the Sup-test,

Sup-Lr =  sup Lt (p )-

does not belong to this class of optimal tests, as was pointed out by Andrews and Ploberger (1994). 

However, since the conditions that led to the class of optimal tests in Andrews and Ploberger (1994) 

are not satisfied in this setting with / ( l )  variables, we cannot, a  priori, exclude the Sup-Lr as an 

optimal test.

Asymptotic distributions of these tests can be tabulated for various choices of tt0  =  T q / T  and 

~ i  =  ~ \ / T .  that defines the fraction of the subsample for which change points are considered. 

Often one can derive analytical expressions for the asymptotic distributions, e.g. H. Hansen and 

Johansen (1999). and simulation can be based on these expressions, or one can simply generate 

a large number of time series based on some choice of param eter values, provided that these 

parameters are not nuisance parameters in the asymptotic distribution.

The 90%. 95%. and 999c quantile for the SupQ, MeanQ, and ExpQ statistics are tabulated in 

Tables 3.4.3-3.4.5.

3.4 . Size P ro p ertie s  o f  th e  Tests

To evaluate the small sample properties of the tests given in the previous section, we perform 

a Monte Carlo experiment. The experiments were made with the computer package GAL'SS,
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generating time-series based on the two-dimensional VAR(l) with one cointegrating relation,

/  \  
'  AATU

=  a
AA'2 1

- 1

\ 1

■hst, s t ^ N (  0 .
^ 0.10 0.05 ^

^ 0.05 0.10 j
(3.4.1)

The generated time series had length n =  200. 300. 600, 1100 and initial value ATo =  0. W hen the 

statistics were calculated, the first 1 0 0  observations were discarded, to reduce any influence the 

choice of initial value may have. So test statistics were based on sample sizes of T  = 100. 200. 

500. and 1000. Simulations were made for a =  0.025. 0.050. 0.075. 0.100. 0.500. and 0.900. The 

parameter a turns out be a nuisance parameter in our finite sample distributions. This param eter 

has a one-to-one correspondence with the stable root of the process, zo. or the stable eigenvalue, 

A2 =  l/z-2 - The characteristic polynomial of a process generated by equation (3.4.1) is given by

I A(z)\ =
1 0

0  1

\
( 1  -  z) -  a

- 1

1

\
( l . - l ) l  = ( l - z ) ( l - ( l - 2 a ) z ) .

which has the roots zy =  1 and z2 = 1/(1 — 2a). and hence, eigenvalues, A[ =  1 and A2  =  (1 — 2a). 

The f ( l)  conditions require tha t A2  satisfies |Ao) < 1. or equivalently a € (0.1). which is the case 

for all the simulated processes. The values of a in the experiment translates into A2 =  0.95. 0.90. 

0.85. 0.80. 0.00 and -0 .80.

Critical \alues for the test statistics, for sizes of 10%. 5%. and 1%, were based on 50.000 

generated time series, for even,- pair of (a, T). The critical values are reported in Tables 3.4.1 and 

3.4.2. along with the asymptotic (x2) critical values.

From Table 3.4.1 it can be seen that the size distortion is not alarming for a > 0.1 (A2  < 0 .8 ). 

However, for a close to zero (A2  close to one) the size distortion is increasing. The timing of 

the change does not play a big role in the size distortions. The simulations based on a < 0.1. is 

most relevant for empirical applications. In economic application, there are typically roots close 

to one. besides the unit roots, and an eigenvalue A with real(A) >  0.8 is usually the case. Given
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Critical values, LR-^ test for a  change a t [0.17’].

T
a = 

1 0 %
0.1 (A2  =

5%
0.80)

1 %
a -- 0.5 (A2  =  

10% 5%
0 .0 0 )

1 %
a = 0 .9  (A2  -  
10% 5%

-0.80)
1 %

1 0 0

2 0 0

500
1 0 0 0

6.1310
5.6526
5.1897
4.9050

7.7738
7.2627
6.6460
6.3918

11.4580
10.9768
10.0702
9.8848

4.5527
4.5066
4.5827
4.5930

5.9259
5.8870
5.9330
5.9983

9.1743
9.0041
9.1439
9.3027

4.3820
4.3712
4.4901
4.5618

5.7268
5.7503
5.8196
5.9231

8.8171
8.7474
9.0563
9.2515

* ( 2 ) 4.6052 5.9915 9.2103 4.6052 5.9915 9.2103 4.6052 5.9915 9.2103

Critical values. LR?- test for a change at [0.25T].

T
a = 

1 0 %
0.1 (A2  =  

5%
0.80)

1 %
a =  0 . 

1 0 %
.5 (A2  =  

5%
0 .0 0 )

1 %
a = 0.9 (A2  -- 
10% 5%

-0.80)
1 %

1 0 0

2 0 0

500
1 0 0 0

6.0567
5.4837
4.9711
4.7659

7.8256
7.1334
6.3831
6.2427

11.5581
10.7639
9.9940
9.5385

4.7252
4.6767
4.6139
4.6004

6.1182
6.1242
6 . 0 2 2 1

5.9572

9.4126
9.4022
9.0431
9.2823

4.5528
4.5078
4.5910
4.5801

5.9904
5.8709
5.9890
5.9579

9.1717
9.2257
9.0826
9.2403

2
A?2 ) 4.6052 5.9915 9.2103 4.6052 5.9915 9.2103 4.6052 5.9915 9.2103

Critical values, LR^ test for a change at [0.507'].

T
a =  

1 0 %
0.1 (A2  =  

5%
0.80)

1 %
a — 0.5 (A2  =  

10% 5%
0 .0 0 )

1 %
a - -  0.9 (Ao =  
10% 5%

-0.80)
1 %

1 0 0

2 0 0

500
1 0 0 0

6.0276
5.3005
4.9586
4.7438

7.7648
6.8921
6.4166
6.1611

11.6975
10.5191
9.9239
9.6193

4.7704
4.6818
4.6597
4.5870

6.1958
6.0812
6.0287
5.9603

9.5186
9.3086
9.2418
9.0965

4.6816
4.6415
4.6022
4.5894

6.1226
6.0237
5.9802
6.0107

9.2817
9.3392
9.3219
9.1048

•M2) 4.6052 5.9915 9.2103 4.6052 5.9915 9.2103 4.6052 5.9915 9.2103

Table 3.4.1: Critical values for the likelihood ratio test for the case with p = 2 and r  =  1 based 
on simulations with 50,000 replications.
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Critical values. LR.7- test for a change at [0.1T].

T
a  =  0.025 (Ao 

10% 57c
=  0.95) 

17c
a — 0.05 (A2  

107c 57c
=  0.90)

17c
a =  0.075 (A2  

107c 57c
=  0.85)

17c
100
200
500
1000

7.3128
7.1444
6.3492
5.7294

9.1252
8.9082
8.0043
7.3884

13.0206
12.7554
11.7104
11.0951

6.8261
6.4603
5.7253
5.2539

8.5235
8.1118
7.3641
6.7995

12.4170
11.7736
11.0342
10.3381

6.4392
5.9457
5.3829
5.0351

8.0782
7.5266
7.0089
6.5278

11.8322
11.2938
10.5588
1 0 . 0 0 1 1

4.6052 5.9915 9.2103 4.6052 5.9915 9.2103 4.6052 5.9915 9.2103

Critical values. LR7- test for a  1change at [0.25rj.

T
a =  0.025 (A2  

107c 57c
=  0.95) 

17c
a  — 0.05 (A2  

107c 5%
= 0.90)

17c
a =  0.075 (A2  

107c 57c
=  0.85) 

17c
100
200
500
1000

7.8987
7.2001
6.0137
5.3901

9.7984
9.0525
7.7950
6.9856

14.1787
13.2050
11.4599
10.5706

7.1010
6.2066
5.3503
5.0298

8.9106
7.9262
6.9006
6.5151

12.9989
11.9992
10.5298
9.8866

6.4892
5.6397
5.0873
4.8677

8.3059
7.3271
6.5553
6.3484

12.2069
11.1988
10.0950
9.7145

•V<2> 4.6052 5.9915 9.2103 4.6052 5.9915 9.2103 4.6052 5.9915 9.2103

Critical values. LR7- test for a change at [0.50T].

T
a =  0.025 (A2  

107c 0%
=  0.95)

17c
a =  0.05 (A2  : 

107c 5%
= 0.90)

17c
a =  0.075 (A2  

107c 57c
=  0.85)

17c
100
200
500
1000

8.0507
7.0967
5.8366
5.2490

9.9911
8.9222
7.4845
6.9117

14.4071
13.0676
11.4455
10.5112

7.0272
6.0975
5.2715
4.9314

8.8446
7.8120
6.8329
6.4484

13.0488
11.6087
10-6469
9.8773

6.3809
5.5795
4.9657
4.8517

8.1670
7.2283
6.4610
6.3053

12.1642
11.0295
9.8895
9.6678

4.6052 5.9915 9.2103 4.6052 5.9915 9.2103 4.6052 5.9915 9.2103

Table 3.4.2: Critical values for the likelihood ratio test for the case with p  =  2 and r  — 1 based 
on simulations with 50.000 replications.
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the observed size distortion one should use critical values based on the ^ -d istribu tions with care, 

when the sample size is moderate. The test is somewhat conservative for small sample sizes, but 

as an easy rule of thumb, one could used 1 % x 2 critical values when the sample size is less than, 

say. 250 and the largest stable eigenvalue is larger than 0.9, and use the 5% x 2  critical values 

otherwise. This would take care of some of the distortion and would lead to an actual size of 

about 4% — 95c.

The size distortion for A2  close to unity, is somewhat in contrast to the observations made 

by Gregory, Nason, and W att (1996). They investigated the tests of B. E. Hansen (1992a), and 

reported only moderate size distortion, but found power to be poor unless the stable eigenvalue is 

small.

3.4.1. Size D istortion  o f  the SupQ, M eanQ , and ExpQ tests

The critical values for the SupQ, MeanQ, and ExpQ were based on the same simulations as the 

ones made for the LR t (p) test, although only for a = 0 .1 . 0.5, and 0.9. The critical values are 

reported in Tables 3.4.3-3.4.S

The size distortions for the SupQ, MeanQ, and ExpQ statistics are similar to the one of the 

LRr(p) statistic. For a =  0.1. a 55c test based on asymptotic critical values seem to be rejected 

approximately 10% of the times, for a sample size of T  =  100.

For the simulated values of a. the size distortion is similar and moderate for all the statistics, 

SupQ, MeanQ, and ExpQ. Based on this, there is no reason to prefer one test over the others 

based on size properties alone. Given the results in Table 3.4.2. one would expect increasing size 

distortion as a approaches zero (A2  approaches one).

3.5 . Pow er P roperties

In this section we study the power properties. We evaluate the power for a sample size of 200. 

when the change occurs at p = 0.1. p — 0.25. p =  0.45. p = 0.5. and the case where p is random
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Critical values: SupQ test for the interval [0.1071 : [0.90T].

a =  0 . 1 a =  0.5 a = 0 .9
T 1 0 % 5% 1 % 1 0 % 5% 1 % 1 0 % 5% 1%

1 0 0 13.0964 15.1224 19.3934 10.0415 11.7753 15.4593 9.8384 11.4438 15.0366
2 0 0 12.3791 14.3145 18.2885 10.1298 11.8296 15.6366 10.0918 11.7574 15.3920
500 11.6036 13.5318 17.4276 10.4120 12.1095 15.7714 10.3943 1 2 . 1 0 2 2 15.8074

1 0 0 0 11.3536 13.1525 17.2453 10.5675 12.2131 15.9337 10.5783 12.2106 15.9890

Critical values: SupQ test for the interval [0.2571 : [0.757'].

a = 0 . 1 a =  0.5 a = 0 .9
T 1 0 % 5% 1 % 1 0 % 5% 1 % 1 0 % 5% 1 %

1 0 0 11.5163 13.5806 18.0332 8.8493 10.5813 14.2715 8.7221 10.3590 14.0159
2 0 0 10.6773 12.6482 16.7293 8.9334 10.6191 14.4508 8.8658 10.5644 14.2996
500 9.9534 11.8281 15.9182 9.0728 10.7630 14.4420 9.1184 10.7993 14.5569

1 0 0 0 9.6728 11.5205 15.5274 9.2111 10.9048 14.5491 9.1996 10.9720 14.6100

Critical values: SupQ test for the interval [0.4571 : [0.5571-

a = 0 . 1 a =  0.5 a = 0 .9
T 1 0 % 5% 1 % 1 0 % O / C 1 % 1 0 % 5% 1 %

1 0 0 8.2322 10.2060 14.6510 6.4282 8.0034 11.6786 6.3505 7.9074 11.3794
2 0 0 7.5132 9.3435 13.3732 6.4964 8 . 1 0 1 2 11.6897 6.4611 8.0570 11.5812
500 7.1433 8.8407 12.8055 6.5895 8.2301 11.8754 6.6023 8.1962 11.9676

1 0 0 0 6.9323 8.5582 12.3834 6.6840 8.2449 11.7043 6.6876 8.2456 11.8379

Table 3.4.3: Critical values for the SupQ test for the case with p — 2 and r  — 1 based on simulations 
with 50.000 replications.
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Critical values; MeanQ test for the interval [0.10T] : [0.90T].

T 1 0 %
a -  0 . 1  

5% 1 % 1 0 %
a = 0.5 

5% 1 % 1 0 %
a = 0 .9  

5% 1 %
1 0 0 4.6804 5.6105 7.8162 3.6782 4.4941 6.4539 3.5772 4.3829 6.2884
2 0 0 4.2271 5.1249 7.2328 3.6325 4.4703 6.4066 3.5779 4.3758 6.2836
500 3.8938 4.7481 6.6875 3.5998 4.4308 6.2706 3.6054 4.3829 6.3162

1 0 0 0 3.7336 4.5518 6.5095 3.5891 4.3670 6.1787 3.5860 4.3792 6.2380

Critical values: MeanQ test for the interval [0.25T] : [0.757'].

T 1 0 %
a = 0 . 1  

5% 1 % 1 0 %
a = 0.5 

5% 1 % 1 0 %
a = 0.9 

5% 1 %
1 0 0 5.0601 6.2148 8.9266 4.0246 5.0241 7.4074 3.9225 4.9275 7.1663
2 0 0 4.5334 5.6746 8.2190 3.9587 4.9937 7.3705 3.9109 4.8962 7.1970
500 4.2164 5.2519 7.6751 3.9186 4.9061 7.2962 3.9071 4.8799 7.2438

1 0 0 0 4.0128 5.0549 7.4785 3.8891 4.8507 7.0597 3.8794 4.8989 7.1792

Critical values: MeanQ test for the interval [0.457'] : [0.557’].

a = 0 . 1 a = 0.5 a =  0.9
T 1 0 % 5% 1 % 1 0 % 5% 1 % 1 0 % 5% 1 %

1 0 0 5.7773 7.3100 10.9838 4.5536 5.8791 8.9554 4.4797 5.7903 8.6346
2 0 0 5.1167 6.5616 9.9398 4.4882 5.7815 8.8768 4.4663 5.7630 8.7857
500 4.7581 6.1283 9.3511 4.4308 5.7725 8.7417 4.4427 5-7164 8.7102

1 0 0 0 4.5580 5.8784 9.0470 4.4025 5.6926 8.6438 4.4235 5-7039 8.6359

Table 3.4.4: Critical values for the MeanQ test for the case with p = 2 and r  =  1 based on 
simulations with 50.000 replications.
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Critical values: ExpQ test for the interval [O.lOTj : [0.907'].

T 1 0 %
a =  0 . 1  

5% 1 % 1 0 %
a =  0.5 

5% 1 % 1 0 %
a =  0.9 

5% 1 %
1 0 0

2 0 0

500
1 0 0 0

3.6941
3.2559
2.9045
2.7709

4.5083
4.0310
3.6250
3.4406

6.3919
5.7258
5.2463
5.1137

2.6652
2.6250
2.6054
2.5906

3.3397
3.2893
3.2557
3.2286

4.9002
4.9077
4.7639
4.7863

2.5771
2.5694
2.5872
2.5866

3.1987
3.2078
3.2176
3.2316

4.6876
4.7276
4.7419
4.7413

Critical values: ExpQ test for the interval [0.257'] : [0.757’].

T 1 0 %
a = 0 . 1  

5% 1 % 1 0 %
a =  0.5 

5% 1 % 1 0 %
a = 0 .9  

5% 1 %
1 0 0

2 0 0

500
1 0 0 0

3.5182
3.0662
2.7670
2.6324

4.3459
3.8855
3.5060
3.3346

6.2892
5.6166
5.1728
5.0206

2.6042
2.5587
2.5239
2.5178

3.3021
3.2592
3.1779
3.1710

4.9218
4.8729
4.7769
4.6755

2.5299
2.5263
2.5221
2.5131

3.1869
3.1662
3-1771
3.1905

4.7072
4.7410
4.7740
4.7010

Critical values; ExpQ test for the interval [0.45T] : [0.55T].

T 1 0 %
a =  0 . 1  

5% 1 % 1 0 %
a =  0.5 

5% 1% 1 0 %
a =  0.9 

5% 1 %
1 0 0 3.1722 4.0398 6.0322 2.4521 3.1591 4.8142 2.4169 3.1155 4.6726
2 0 0 2.7819 3.5738 5.4108 2.4142 3.1062 4.7590 2.3986 3.0886 4.7489
500 2.5612 3.2996 5.0918 2.3782 3.0848 4.6971 2.3768 3.0772 4.6929

1 0 0 0 2.4450 3.1533 4.8359 2.3660 3.0563 4.6157 2.3672 3.0604 4.6186

Table 3.4.5: 
simulations

Critical values for the ExpQ test for the 
with 50,000 replications.

case with P = 2 and r  = 1 based
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and uniformly distributed over the interval [0.1,0.9].

We consider alternatives in two directions: the case where there is an actual change of the 

cointegration space, and the case where there is a rotation or rescaling of the cointegrating relations, 

but the cointegration space is unchanged.

We modify equation (3.4.1) by replacing 3  with

This is the case where the cointegration space is changed after time r  =  [pT\.

0.90  -

0.80

0.70

0.60

0.50

0.40
ExpQ

0.30
MeanQ

0.20 SupQ

0.10 MidQ

0.00
0.00  0.10  0.20  0.30  0.40  0.50  0.60  0.70  0.80  0.90  1.00

Figure 3.5.1: The power functions in the T -convergent directions, based on simulations with 10.000 
repetitions

Consider first the case where the change point is uniformly distributed on the points \~oT\........

[rriT']. Figure 3.5.1 displays the power functions for SupQ, MeanQ, ExpQ, and MidQ =  L R t ( T /2). 

under the alternative where r  is uniformly distributed over the points [0.1T]......... [0.9X]. and where
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the first three tests are based on the tests L R t ( t ) ,  t  =  [0.17’] . . . . .  [0.9T], and thus exclude the 

first and last 10% of the LR statistics.

As can be seen from Figure 3.5.1, there is hardly any difference in the power of the first three 

statistics, and the difference may simply be due to  sample variation. This indicates that the 

optimality of MeanQ and ExpQ over SupQ, shown by Andrews and Ploberger (1994), does not 

carry over to the situation with 7(1) variables. The naive MidQ test has, as expected, worse power 

properties. On the other hand the MidQ statistic dominates in terms of simplicity, because it only 

requires one estim ation under the alternative, and has a \ 2 distribution.

P o w a r  F u n c t io n  Mi T - d i r o c d o n t ;  C t i M f •  a t  (O .tTJ

o eo
0 so

Q *0

Q 10c *o
0 0 0  0 to  0 30 0 3 0  0 40 3 SO 0 60 0 70 O N  0 30 *00

P o w r  F u n c tio n  Mi t> d lrn c o a n » :  C l in n f  •  i t  (0 .2ST]
o no

e to
3 6 0

oso

0 40

0 2 50 10
000 Q 00 0 10 0 3 0  0 40 OSO 0 6 0 1 00

3 eg
o so 0*609 0 20 060

F u n c tio n  in  T -« tr6 c f lo n » . C n « n f 6  a t  [0-STj

0 70

0 60

• -E x p Q0 *0
— — M eanQ0 30

0 20  SupQ

 MkJQ
000

000 0 30 0 60 0 60 0 60 1 00

Figure 3.5.2: The power function for the test statistics, for a structural change in the 7'-consistent 
directions. L’pper left, upper right, lower left, lower right panel are for a change at tim e [0.17']. 
[0.257']. [0.457’]. and [0.57~] respectively. The thin dotted line in the two upper panels is the 
power envelope -  the L R t test for a change at [0.17’] (left) and [0.257'J (right). Based on 10000 
replications for the sample size T  = 200.

In Figure 3.5.2 we calculate the power functions for changes occurring at particular points in
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time. There is not any noteworthy difference between the power of SupQ, M eanQ, and ExpQ, but 

not surprisingly MidQ is more powerful a t r  = T / 2, and has low power for r  far from T/2.

Next, consider the alternatives that involve a rotation or rescaling of the cointegration param­

eter. These take the form 0{t) =  0 o<p(t), where <p(t) =  4>\ for t < r. and o (t) =  <?2  for t > r . and 

where and o 2 are r  x r  matrices of full rank. A change of this type need not be associated 

with a change in 3, but can instead be interpreted as a change in the adjustm ent coefficients a. 

in a way that leaves the orthogonal compliments of a  and 3  unchanged, and hence the stochastic 

trend. 3 x (a j_ r3 x )_ la 'x unchanged, (see Johansen (1996)). This double interpretation

is explained by the fact that a  and 3  are not identified from a given value of the p x p  matrix a3'. 

Thus, a  constant and 3(t) — 3o(t) is equivalent to a(t) = ac{t)' and 3  constant. The parameter 

estimates in these directions are only 7 '1/ 2 -consistent. as opposed to the T-consistency we had for 

the other directions. VVe may therefore expect the power of the test to be lower, and that the tests 

MeanQ and ExpQ dom inate the SupQ test, due to the results by Andrews and Ploberger (1994).

The param eter 3. in equation (3.4.1). was substituted with

in the simulations for various values of c. where r  is uniformly distributed on [~qT]..........[~i 7~].

Figure 3.5.3 shows the power function of the test statistics. As can be seen, the MeanQ and 

ExpQ do dominate the SupQ, but the power of all the tests are quite poor: for a change as large 

as 3 =  ( 1 . —1 )' to 3  = (3. —3)' the tests only reject the null hypothesis of no changes in about 

50% of the cases, where as a change from 3  — (1. — 1)' to 3  =  (1 . —2)' is rejected in about 85% of 

the times, see Figure 3.5.1.
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-  -  E x p Q0.20
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Figure 3.5.3: The power functions in the T 1 /2-convergent directions, based on simulations with
1 0 . 0 0 0  repetitions

3.6. C on clu sion

This paper showed how the Sup, Mean, and Exp test can be based on the likelihood ratio test for 

changes in the cointegrating relations, and th a t the likelihood ratio test is easy to compute. In a 

situation where the potential change point is known or chosen independently of the sample, the 

likelihood ratio test is asymptotically \ 2. W hen the timing of the change point is unknown, the 

MeanQ test and the ExpQ test have better power properties than the SupQ in directions in which 

the parameters are T l^-consistent. In the other directions in which the param eter estimates are 

T-consistent. the MeanQ, the ExpQ, and the SupQ have similar power. The naive MidQ test is

dominated by the three other tests, but is easier to compute and evaluate.

The Monte Carlo study indicated some dependence on nuisance parameters in small samples. 

This bias is not alarming when the stable roots are not too close to unity.

Information on how to correct for the bias in the tests, could be obtained by additional simula­
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tions. and derivation of an approximation for the response surface, see Hendry (1984). preferably 

along with an analytically derived bias correction similar to the results of Johansen (1999a. 1999b). 

We leave this for future research.

A p p en d ix  C: A sym p totic  A n alysis and  Proofs

In this appendix we give the proofs of the preceding theorems. The asymptotic analysis is a bit 

involved: what only took half a page to formulate takes several to prove. Part of the analysis is 

similar to the analysis of the standard model with constant parameters, (see Johansen (1996)). 

from which much inspiration is taken. In the model with constant param eters the important 

element of the asymptotics is a (p — r)-dimensional Brownian motion. This Brownian motion 

leads to a stochastic integral that describes the limit distribution of the cointegration parameters. 

In this model with a structural change the asymptotics involve, in part, a stochastic integral and. 

in part, standard results from the stationary analysis.

In the following, we derive for simplicity the asymptotic distribution with Q D t =  0. More 

general choices of <$Dt would change the rate of convergence for some of the lim its we derive, but 

will not change the main results: That the asymptotic distribution of the cointegration parameter 

estimates are mixed Gaussian and that the likelihood ratio test, for no change against a change 

at a known point in time, is asymptotically' ,\2-

C . l .  Lim its and R ate  o f Convergence

In the asymptotics we shall keep the proportion of observations in each sub-sample constant as T  

goes to infinite, and we denote the ratio of observations in the first sub-sample by p =  ^  €  (0 . 1 ).

Under the null hypothesis, the parameters are constant 3 j =  d2 = 3. and 3 'X t and A X t are 

stationary. So we can adopt many results from Johansen (1996). We denote the covariance matrix

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



www.manaraa.com

91

bv

/ Eoo Eo 3 A X t Zot
=  var

1
\A X t ! . . . - -AATt t+1 =  \ras \Z2t

V E 3 0 E 3 3  ) _ 3’X t_! 3 'Z it

From Johansen (1996) we have the identities

E o^E jj =  a

Eoo — E0;?EjjEjo = 

( E j j  — E jo E ^ E o j)  — E jJ  =

(C .l)

(C.2)

(C.3)

By the law of large numbers we have that 5oo Eoo- 3 'S l 0  Z, Ejo- 3 'S n 3  3-, E 3 3 , and that the 

following limits in probability are well defined:

3 'M u d  -  E ^

3 'M l2  ^  S

\ I 22 i  E2 2

3 'M l2 M ^ l M 2l3  ES3 =  EJ2 E2-2i E23

3 'S i 13  E j j  — E j j  E j j .

where E 0 3  =  E 2i3.

To simplify notation we let 7  =  2p — 1. and define

ZjQ3 =  EjoEqo'Eoj

E 3 3  — E*2 E 2 2  Y.2s

^33 =  ^33  +  (1 — 72)E j^.
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where ( 1  — 7 2) is a  measure of the change point position in the sample, with ( 1  — 7 2) =  1  if the 

change point is in the middle of the sample and decreases to zero as the change point approaches 

the beginning or end of the sample.

From Chapter 1 we have the Granger representation which gives the moving average represen­

tation of the process

t
X t = C ^ 2 s t + C ( L ) e t  +  C ( X o-rVY-!--------rfc_,Jf_fc+1).

t = l

where C =  J x (a'± r/3x ) _1 a'x and where C (L)ct is a stationary process. The continuous time 

limit (of the non-stationary directions) are denoted by

r _ l / 2 3 x f l l[Tuj -  y x CW'(u) =  G(u). (C.4)

where ll'(u ) is a Brownian motion with no drift and covariance matrix Q. and denotes weak 

convergence on D [0 .1). (see Billingsley (1999)).

Next, we define

so that B. Bo and B\  form a mutually orthogonal basis, and B  and Bq define the directions of 

Z u =  I(t>T)X't_ iy  that are 1(0) and B \  defines the directions that are / ( l ) .

The limits of various matrices are given in the following lemma.
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L em m a C .l .  With the definitions above we have that

B 'S io

B'qS io

( B . B oY S u ( B . B o)

( B .B Qy S loSw l So i(B .B o)

T - 'B ' t S u B y

B [ S le = B [ ( S W -  S u B c x ' )

B'0S U

( B .B o Y S n B y

S j o

7^ j o

T j j  7 ^ JJ  

7^J3 51~33

T jO J  ~ 5 1 J Q 3

7 ^ J 0 J  7 2 5Zj o j

J p G(u)G’(u)du 0

0 / ;  G{u)G'{u)du j

f 0PG ( d \ v y  '

V f j G ( d l V ) '

zc ~  .v(o. x  n)
Op( 1).

(C.5)

(C.6)

(C-7)

(C.8 )

(C.9)

(C.10)

(C .ll)

(C.12)

P ro o f. Equation (C.5) follows by the law of large numbers and the identity

B 'S l0 =  B 'M io -  B , M l2M £ M 2o -  d ' . \ / I 0  -  3 'M l2M ^ l M 20 = d 'S l0.

To prove the other identities, it is convenient to define the sub-sample moment matrices:

M i j ] = T ~ l £ z teZ ' t . i . j  =  0 . 1 . 2

t = I 
T

= T~x Y ,  z >tz jt i j  = 0.1.2.
f = T + l

and similarly define M ^  where Z \ t replaces Z \t . k = 1.2. The stationaritv  implies that Moo. 

M qo /p. .U<5V(1 — p) have the same limit, and similarly for M q2. M 22. 3 ' M \q. and 3 ',\[l2.
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We have

B'0S l0 =  ( J ' - ' C  -  ~  (3’ M l V  ~  3 ' U - ^  M 2 0 )

= P(0 'M IO -  ^ A /ia A /a 1 A/2 0 ) -  (1 -  pK & M io ~  & M ^ M 2a) +  op(l)

= (2p — l ^ S i o  +  op(l)

= (2p — 1)Ejo + °p(l)-

which shows (C.6). The upper left element of (C.7) is proven by

B 'S UB = 3 'M [\]3  +  3 ' M ^ d  -  ( 3 ' M ^  + 3 ' ( ^ 4 i  3  +  *^2 ?’3)

= (p  +  (i - p ))S3 j - ( p  + ( i - p ))E5j (p  +  ( i - p )) +  op(i)

=  E ^ - S ^  +  op(l) =  E JJ  +  0p(l).

and the off diagonal elements by

B ' S n B o  =  J 'A /fJ ’ j  -  3 ' M ^ J  -  (.3 ' M $  +  3 ' (A/ij’ 3  -  3 )

=  (p -  (1 -  p ))Z u33 -  (p +  (1 -  p))T.c33{P -  (1 -  p)) +  op(l)

=  (2p -  1 )E jj  +  op( l)  =  ~/Y.33 +  op(l),

and finally the lower right element by

B'0S  1 1 B0 =  f3 '(A /1(11) +  M ™ )0  -  ~  A / ^ J A / ^ C A / ^  -  .\l£>)3

= (p-h (I — p ) )£ 33 — (p — (1 -  p))E33(p — (1 — p)) + o p(l)

=  E3a -  T.%a + (1 -  T W 3 3  +  0P(1) -  E j j  +  (1 -  y 2)llc33 + op( 1).

Equation (C.8) follows directly from (C.5). (C.6). and the fact that Soo ^  Eoo- The continuous
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mapping theorem and (C.4) prove (C.9) and (C.10). Equation (C .ll)  is proven by noting that

T  T

T - ^ E l ' o R u s ' t  = T - i  j y ( * u l ( l < r )  - * « l ( t<r))£'«
1 = 1  1 = 1

is a Linear combination of two Gaussian variables with mean zero, since Vt — 3 'R u  =  1-«

is a linear process with exponentially decreasing coefficients. So what remains is to derive its 

asymptotic variance. This is found from

T
= ^  T - ' ^ E  [ B ’aR u k u B0) x  E  (£tc't )

00 L
= lim BqS\\Bq >: H =  Hjj x  f>.

T  —-»oo

by the law of iterated expectations.

Finally. (C.12) is a  moment m atrix of an /(0) variable and an / ( l )  variable, so the term  is 

Op(l). This completes the proof. ■

L em m a C .2 . B  B.  d  a .  and f2 Q.

P ro o f. The estim ator of B  is found by solving the eigenvalue problem

|a S h  — S iqS ^ S qi | =  0. (C.13)

Solving this is equivalent to solving

I Aj4^-5i i .4t- — -4^-SioS(^15 oi/1t | = 0  (C.14)
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where A t  is the full rank m atrix

A T = ( B ,B o ,T ~ l/2B l ).

T  — oc. the solutions to (C.14). and hence (C.13) converges

of

5233 75233 0
\

0 52 303 752303 0

75233 E L 0 0 7 5 2 3 0 3 ~ 2v*t ^303 0

0 0 SZ GG'du 0 0 0

0 0 0 f pl GG'du J V 0 0 0

= 0.

I  7  /
Define the full rank m atrix Q = I I . then

0 - I

Q'
- 3 3  7 ^ 3 3

Q  =
7 ^ 3 3  E}33

, . 52303 7^J0J
Q Q

5233 0

V 0  ( 1 - 7 2) Z h  J
52303 0

0 0752jo3 7252303

where we. in the lower right block of the first equality, used that

52j3 -  7 25233 =  5233 +  (1 -  7 2)52%3 -  7 25233 = (1 -  7 2)52"33.

So the solutions of (C.15) converges to the solutions of

IA Ejj -  E jo jI |A(1 -  72)5233\ |a  f  GG'du L  [ '  GG'du
I Jo I Jp

= 0.
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which has r  positive real solutions from the first term, since T .q j H 3 ^  is a  real sym­

metric positive definite matrix, and r  +  2(p — r) zero solutions (almost surely) from the last three 

terms.

So the space spanned by the eigenvectors corresponding to the r  largest eigenvalues of (C.14) 

converges in probability to the space spanned by the first r  unit vectors. Hence the space spanned 

by the eigenvector corresponding to the r  largest eigenvalues of (C.13) converges to  the space 

spanned by the first r  columns of .4^’ =  (B. Bo. T* B i ) ' . which is the space spanned by the true 

param eter values B. since B  =  ^(3. 3). Let c be a  2p x r  m atrix with full column rank, and such 

that c'B  has full rank. The result above shows that the normalized estimator, B c — B { d B ) ~ l . is 

consistent for B°  =  B (U B )~ l . where the chosen normalization is cfB =  /.

One can (in theory) normalize with respect to  the true parameter, that is

B  =  B  ( B ' B y 1.

We then have that

A t 1B  =  (B .B 0. T i B 1)'B =  (I.  U0T. r k ' i r )  -  (/ .0.0)

which shows that Uqt =  B'0B  = op(l) and U\t  =  B [B  — op(7'_ i).

From the identity

B = B  + B qB'qB  +  B i B \ B  = B  -f- B qUqt +  B\U\t

we have B  — B  = B qU q t  + B \U i t  and

B ' S u B  = (B + BqUqt + B \ l j \ t )’S \ \{B  -i-BqUq t -r  B \U \t )

= B S u B  +  op(l) =  H3 3  +  oP(l)
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where the last equality follows from Lemma C .l. Similarly B'Sio  =  Ejo + °p (l)-  

of d  follows from

d =  S0lB ( B 'S u 5 ) - 1 -E, E q jE jJ  =  q. 

see (C .l). and the consistency of Cl follows from

Cl = Soo — S q iB ( B 'S h B )  lB 'S  10 Eoo — T o jT JJS jo  =  fl.

see  (C.2). ■

L e m m a  C .3 . B  has a mixed Gaussian asymptotic distribution.

P ro o f. The likelihood equations for a  and B  are given by ^5oi — d B 'S i  i j  B - 

c tB 'S n )  =  so by inserting S0t =  ctB’S n  +  S«n we find

0 = S slB  - ( d - a ) B ' S u B  - a ( ^ B  -  B ^ '  S n B  

0 =  a'Cl~l (S€l - d ( f ? -  B ^ ’S u  - ( a - a ) B ' S n ) -

X o te  that

(B  -  B )’S u B i  = (UoT B'0 + TU[TT ~ lB'l )S l l B l

= UqTOp{\) +  TU[t [T~1 B ' .SnB ,]

=  TU[r  f  GG'du -r op(l).

so the consistency

0 and d 'li(Soi —

(C.17)

(C.18)
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so by multiplying equation (C.18) by B \  from the right we find

0 =  d 'f T 1 [ s ei -  d  (UqT B q +  TU{t T - 1B[) S n  -  (d -  a)  B 'S U] B x

= a 'f i " 1 J y  dW G '  -  a  [TU[r \ ( ^ J  GG'du'^j +  op(l)  .

by the consistency of d  and fi. Hence the asymptotic distribution of U\t  is given by

TU i t  -  ( J  GG’du^j j  G d \ V ' n ~ l a  (a'fT'a)-1

which is mixed Gaussian, and we have shown th a t L \ r  — Op( T ~ l ).

In the last part of the proof, we make use of the following two results

( B - B ) ' S u B  = (UZT B'0 + U'lTB'1)S l l (B + U()TB'Q + UlT B ,l ) 

= UqT B'qSiiB  -rO p(T ~ l ) 

= U^ T ' ^ 3 3  +  op( T - 1' 2).

and

( B - B Y S u B q = {U[>T B'Q + U[TB \ ) S n B 0 

=  1%t B'qS u Bq ~ O p{ T - 1)

= UqT ’£,'j i3 + op(T ~ l/2).

, — 1  / / - > —  1 / -  \ ___________ I  m i l  / y - » _  !  \  —  1Next, let U'aT =  ( a 'n ~ la )  a'Q  *(d — a ), and multiply (C.17) by T i  (a ’Q ~l a ) a 'Q -1 from

the left and  (C.18) by (a 'Q ~la)  1 from the left and by ( t 1; B q Ĵ from the right. This yields the
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following two equations

( a ' f i ~ l a )

{a'n~la)~l a ' O - lT ± S €lB0

T  1 +- T  - Uqj-~(^33 ~r °p(l)

T±U'aTy Z 33 + + oPd ) .

which can be expressed in m atrix form

7£* j 

2*33 ]

T t U aT

T^U ot

(  B'

\  B'0
Sir fl !q  ( a 'f i  ‘a )  ~i“ Op(1)

such that

(  TiUaT Z 3 3  7E.

T?Lr<or 1^-33

-1
3 3

S'*
^*tofi ( a 'f i  *a)

where Z(
(

6*0 -V(0.
S j j  7 ^ J J

X fi). The asymptotic normality of (B. Bq) 'S i£
y ~/^33 ^~33

proven the same way as (C .ll)  was proven.

Isolating U q t  and L \ t  we find that

( r U 'o r . r r . r )  -  {t ^B q. t b ^ ’ (b  -  B)

z €

I “ 1[f0P G G 'du}-1 f Qp G ( d i v y  

{  [ fpG G 'du}~1 / ;  G (d \V ) '  )

f i- l Q (a 'f i-

wliich shows that B  is mixed Gaussian, with a partly non-stochastic mixing parameter.
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C .2 . Expansion and A sym p to tic  D istribution  o f the L R  Test 

P roof o f Theorem  3.2 .2 . Recall that a B '  =  dB ' so that

Q =  Soo— a B 'S n B d g

=  S o o -  S o i B ( B ' S n B ) - l B ' S lo

where we substituted in for d  =  S qiB ( B 'S u B ) ~ l . and note that

\Cl\ =  \ S o o - S o i B ( B ' S u B ) - l B 'S io \

,s  , \ B ' ( S n - S l0SMlS0i)B\
° °  \B ' S n B\

For the restricted model, where B  is known, we similarly have that

i n 0 | =  ISool
\ B ' ( S n - S w S n l S o i ) B \

\ B ' S n B\  

So the quotient test is given by

q —2 / t   l-B'C-Sn S iq S q q  Sqi)R | / \ B ' ( S n  ~  S i q S q q 1S q i ) B \

\ B ' S n B\  /

If we define

C t  — A ’t { S i \ -  S iqS qq1 S o \ ) A t  

D t  =  A't S \ \ A t .
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where A t  = (B .B q. T  l/2B \) .  we have that Ct  and D r  are Op(1). Now. (B  — B) =  B qUqt +  

B i U it  =  A t Ut , where UT = (0. U^t , T ^ 2U[t Y = Op(T ~ 1' 2), so we have

( B - B ) ' S u ( B - B )  = U't Dt Ut  =  Op( T ~ l )

(.B - B Y S n B  = UqTBqS i i B  = Op( T ~ l/2)

(B  — B ) ' S iq = U^t BqS w +  Op( T ~ l ) = Op( T - l/2)

and similar identities involving B n  — 5 io S ^ l 5oi.

We use the expansion, taken from Johansen (1 9 9 6 ) ,  of f ( x )  =  [x ';\/x |/|x 'A rx|:

lo g /(x -t-h ) =  lo g /(x )

- t r { ( x ' N x ) - lh '(N  -  . \ x { x ' N x ) - lx 'N )h \

+ tr{ (x 'M x )~ lh '(M  -  M x i x ' M x ^ x ' M ) ^

+ 0(||h ||3).

where 0 ( ||h ||)  =  m ax.j In our case we have x  = B. h = B — B . M  = S u  -  S ioS ^ S qi. and

.V =  S n- The first term is given by

tr { { B ' S u B y H B  -  B ) ' ( S n  -  S n B { B 'S n B ) ~ l B 'S n )(B  -  B)}

=  tr{E jj(C /’f D t Ut  -  £ ' o T 7 £ d j £ j j £ Jj 7 t f o r ) > +  °p (r _ I )

=  tr{ E jj(C /fD T UT -  12U ^ 3 3 U o t )} + op( T ~ l ).

and similarly we find the second term  to be

tr{ (E J3 -  Y.303)-1(U!t Ct Ut  -  72C^t ( S j j  -  S jo jK o t)}  +  op( T - 1).
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Since h =  (B  — B)  is Op(T  l/2 ), the remaining term 0 ( ||/i ||3) is Op(T ~ 2/2).

Xow U't C t ^ t  =  U't D t U t  ~  1 2U qT Y .3q3 U q t  +  °P{T~1). so the two terms nicely add up to

tr{ [ (£ j j  -  E jo s)-1 -  E j j W ^ D t Ut  -  ~i2U^T i:33UQT)\  +  op(T ~ l )

= tT{Q.'n-la {U'TDTUT -  ~i 2U qT T.3 3 U q t ) } +  op{T~l ).

where we used (C.3).

Finally,

(
U't Dt Ut  -  ~i2UqTT.33Uqt — {Uqt . T 1/2U[t )=.

Uor

T x‘2U
~ o p{ T ~ x).

1T

where

( 1 - 7 2)E33 3

0

0

0 0 ^
f 0P GG'du 0

0 / ;  GG'du )

(see (C.16) for the upper left element). We can conclude that

- 2 logQ  -- tr{Z r Z^-} + o p(l).

where

Z T =  ( a 'Q ^ a ) 4 ( t *U^t .TU'i t )  Hi
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is  a s y m p t o t i c a l l y  Ar( 0 . / r  / r + 2 ( p - r )  )• w h ic h  s h o w s  t h a t

- 2  I o g Q  x 2 (2 p r  -  r2).

m

C o n s i d e r  t h e  t e s t  o f  3 t =  3 2 =  3 q a g a i n s t  3 X =  3 2. B y  a p p ly i n g  a n  o r t h o g o n a l i z a t i o n  a r g u m e n t  

w e  c a n  g iv e  t h e  l a s t  p r o o f .

P r o o f  o f  T h e o r e m  3 . 2 . 3 .  T h e  r e s t r i c t i o n  o f  3 l =  3 2 c a n  b e  e x p r e s s e d  a s  t h e  l in e a r  r e s t r i c ­

t i o n  B  =  H 3  w h e r e  H  =  {Ip . Ip ) ' . D e f in e  t h e  p r o j e c t i o n  m a t r i x  P h  =  H ( H ' H ) ~ l H'.  t h e n  t h e  

l i k e l ih o o d  r a t i o  t e s t  o f  t h e  s i m p le  h y p o t h e s i s  o f  3 l =  <32 =  3 a a g a i n s t  3 l =  3 2 c a n  b e  e x p r e s s e d  a s

- 2 \ o g Q ( 3 l = 3 2 =  3 0\ 3 1 = 3 2)

=  Ttr  | a / f l - 1 a (L o x -  T 1̂ 2U[ t ) Ph S \ i Ph { U' q t . T 1̂ 2U[ t )'^ +  op( 1)

=  tr  { z r .U (M 'M ) ~ l \ I Z 'T} +  Op(T~±).

f o r  s o m e  r ~-2{p — r)  x p  m a t r i x  M  w i t h  fu l l  r a n k  p.  T h i s  s h o w s  t h a t

- 2 1 o g Q ( J l =  32\B) =  t r { Z TZ'T } - t r { z T. \ r ( U ' M ) ~ l M Z r } + O p(T~i )

= tr { Z t M j. (A /1 3 /jl)"1 M ^Z 'r} +  Op( T ~ i)

X2(pr).

T h i s  c o m p l e te s  t h e  p r o o f .  ■
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Chapter 4

Determining the Cointegration Rank 

in Processes with Structural Changes^

A b stract

It is well known that unit root tests are affected by structural changes in the 

parameters. This chapter provides a general framework for determining the extent 

of stationarity versus unit roots in a multivariate time series with structural changes. 

Changes in the mean, trend, slope coefficients, and covariance m atrix are all special 

cases of this framework.

I derive the likelihood ratio test for determination of the cointegration rank in the 

vector autoregressive model with changing parameters. Its asym ptotic distribution is 

shown to be a convex combination of Dickey-Fuller distributions, when the change 

points are taken as given. Some tests for the case with unknown changes points are 

suggested and discussed.

*1 th a n k  S o r t 'l l  .Johansen for m any v a lu a b le  su jy ;ostio iis. \ n  e rro rs  rem ain  m y resp o n sib ility .

107

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



www.manaraa.com

108

4.1. In trod u ction

It is well known that unit root tests and tests for cointegration can be misleading if the underlying 

process has structural changes that are not accounted for. A shift in the mean in a univariate 

process causes Dickey-Fuller type tests to accept the null of a unit root, (see Perron (1990)).

In tliis paper. I derive the likelihood ratio (LR) test to determine the cointegration rank in a 

multivariate framework where the number of structural changes may be any integer. The cointe­

gration rank may differ across the regimes. The ranks in the individual regimes are determined 

simultaneously. Situations with known and unknown change points are both treated, and the 

framework allows for changes in all parameters, multiple changes, and multiple cointegration re­

lations.

The framework used is the vector autoregressive (VAR) model with parameters that may 

change their value a t the change points. The LR test for the number of cointegration relations is 

similar to the one of the standard model without changes. When the change points are known, 

the asymptotic distribution is a weighted average of Dickey-Fuller distributions, known from the 

standard model. When the change points are unknown, one can use tests that are calculated from 

the sequence of LR tests. Such tests include the supremum of the tests (Sup-LR) and the average 

of the tests (Ave-LR).

In models with structural changes, there are two types of problems. One is to determine the 

number of change points and estimate when the changes occurred, (see Bai (1997. 1999). and Bai 

and Perron (1998)). Another problem is to analyze the qualitative changes in the parameters, and 

test for constancy of parameters. The early studies in this field, starting with Chow (1960) took the 

change points as given, whereas the situation with an unknown change point has been analyzed by 

Quandt (1960). Nyblom (1989), Andrews (1993), and Andrews and Ploberger (1994). In relation 

to cointegrated processes, parameter stability has been analyzed by B. E. Hansen (1992a. 1992b). 

Gregory and B. E. Hansen (1996), Seo (1998), Quintos (1995, 1997). H. Hansen and Johansen 

(1999). and P. R. Hansen (2000c).
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The problem treated  in this chapter, is the additional problem that arises from cointegration 

models with structural changes. That is to determine the extent of cointegration versus stochastic 

I ( l)-trends. Naturally, a test for constant parameters is indirectly a  test for a  constant rank as 

analyzed by Quintos (1997) and by Inoue (1999) who derived the rank test (test for the number 

of cointegrating relations) in the situation where the process may have a broken deterministic 

trend. This chapter generalizes this problem to a situation w ith multiple structural changes, 

where the changes may affect any parameter, including the linear trend. I provide a  test for 

determining the cointegration rank that may change at the  change points: the test for constant 

rank is a special case of this test. The method allows for some parameters to be held constant

across some (or all) subsamples. This is often desired in practice to avoid an overfit by having too

many free param eters. A structural change in all param eters is easy to  estimate using param eter 

estimates based on the different subsamples, whereas the case with a partial structural change 

(some parameters held constant) can be solved with techniques developed by Boswijk (1995) or 

the generalized versions thereof, derived in Chapter 5.

4.2. T h e S ta tis tica l M od el

We consider the p-dimensional vector autoregressive model with structural changes in the param ­

eters which may change their values at change points. The case with m  structural changes results 

in m -f- 1 distinct sub-samples with m  +  1 (possibly) different param eter values. The time of the

change points is denoted by 7 j  Tm where 0 < Tj <  • • • <  Tm <  T. such that subsample j .  is

given by Tj_! - h i  Tj. j  =  1 m +  1.  where To =  0 and T ^ i  =  T.

In the error correction form the model is given by

fc-i
A Xt  =  r ijA t - 1  -r ^   ̂r j ' iAXt- i  - r  $>jDt -h £t- t =  Tj - j  - h i  Tj .

t = l

where et is assumed to be independent and Gaussian distributed with mean zero and variance
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Q. The variable Dt contains deterministic terms such as a  constant, a linear trend and seasonal 

dummies.

For each of the subsamples, j  =  1 , . . .  , m  -f 1. we assume that the characteristic polynomial, 

Aj(z)  = 1(1 — z) — IIjZ  — i — 2 )2 '.  has its roots outside the unit circle or a t one (z = 1),

and that the number of unit roots equals the reduced rank of IIj. J  =  1 m -f- 1. When there

is at least one unit root, these conditions ensure that X t is integrated of order one within the 

subsample, (see Johansen (1996))-

If the number of unit roots are less than p. then the process is cointegrated. We denote the 

(cointegration) rank of IIj by rj, and write n j  =  ctj J '  where otj and 3j  are p x r} matrices with full

column rank, j  — 1 q. As shown in Johansen (1988). 3j  defines the r , cointegrating relations

whereas a.j can be interpreted as the adjustment coefficients.

4.2 .1 . E stim ation

In the situation where all the parameters a(t) .3 (t) .  T i( t)  and 4>(t) have structural

changes, the model is easily estimated using the reduced rank regression techniques of the standard 

model, applied to each of the subsamples.

The parameter estim ation under partial structural changes is slightly more complicated. Con­

sider first the case where only a(t)  and 3(t) have structural changes.

We define the indicator functions Ij(t) =  I(T}_i -r 1 < t <  Tj)  for j  =  1 m — 1. and with the

conventions Zot =  X X t . Z u — (X't_ i f i ( t )  (f))' and Z2t -  ..........A.Y'_fc+I.

D[)'. the model can be expressed as:

Zot =  (a i  u m + i)  (3'Zit +  'bZ-it +  -£•
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where 'f' =  (T j T fc-i,^ ) and where

0 =

\

0i  0

0 02

0

0 0

0 0 

0

3 m 0

0 3 m+i

This structure of 0  leads to  a generalized reduced rank regression problem, because the structure 

can be formulated by the linear restrictions vec(0) — H>p. where H  is a known matrix and ^

contains the free parameters in 0 .  To simplify notation we define a. =  ( a ] .........a m+1). The

solution to this estimation problem is given by the corollary below, taken from P. R. Hansen

(2000c).

Consider the regression problem Zot =  q /3 'Z k -t 'I'Z^/ +et where 0  is restricted by vec(/3) =  HO 

and where Z u and Z2 t are J-t-\-m easurable and {£{} is a sequence of i.i.d. Gaussian variables

with mean zero and variance Q. The cr-algebra. J-t . is generated by Z 0 1 . Z 0 2  Z o t  and initial

values (Z 1 1 .Z 2 1 ), ( =  1 T.

Define the moment matrices Mij  =  ^  Z ltZ'Jt. i . j  — 0 .1 .2 . and the residuals Rql =

Zot ~ -lfo2 ̂ ^22 Z*2.t. R\t = Z u  — M  1 2 ^ ^ 2 2  Zot . and the moment matrices of the residuals S tJ =

r Z L t K t R ' j f  i J  =  0 . 1.

C o ro lla ry  4.2 .1 . With the conventions given above, the maximum hkelihood estimates satisfy
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the equations

vec03(ck.n)) =  H  [ # '  t f ]~  H ' {a  X; S l0) vec ( f T 1) (4.2.1)

d(,3) =  S ol0 ( p S u 0 y \  (4.2.2)

6Q3) =  Soo - S o i P f t S n P y 10 ' S IO. (4.2.3)

=  M 0 2 M22 1 - a p  \ I l2M22- (4.2.4)

The maximum  va/ue o f  the likelihood function is given by

T - ^ r ( d . £ . 4 ' . n )  =  ( 2 - e ) p | n | .

where p is the dimension o f  the process Zot .

Parameter estimates are found by iterating on equations (4.2.1-4.2.4). starting from some 

initial values for the parameters, and is in nature similar to the switching algorithm by Johansen 

and Juselius (1992). For more on this estimation technique see Boswijk (1995) or P. R. Hansen

(2000c).

If the variance is not the same across subsamples, the likelihood equations are slightly more 

complicated. In fact the likelihood equations are now given by

vec(/3) =  H  [H 'Z \AZ - lZ lAH] 1 H 'Z \AZ - lvec(Z0 -  C Z 2)

vec(d.'F) =  [Z is 2 ^  *ZiB2 ] Z'iB2 ^  1vec(.Zb).
t,

n ,  = (Tj -
t = T j - i  + 1

=  Zot — dt@Zit ~  ^fZ2£.

where E is the Tp y.Tp  block diagonal matrix with f>i in the T\ first blocks, Q2 in the next T2 — Ti
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and so forth, where

ZlB2 =  ((Z{0. £ £ ) .* /„ )) ,

Z lA = ( Z [ x & ) K Pl,r .

and where Zq =  (Z q\ . . . . .  Z qt), =  ( ^ u ,  • • - . Z xt )- and Z i  =  (Z2 1 ......... ^ 2 r ) ,  (see P. R. Hansen

(2000a)).

The maximum value of the likelihood function is given by

L - ^ r (ck.i3. 9 . ( 1 * .......... n TO+1) =  (2~e)p | D , r  • • - I f W , ! '—

where p} = (Tj — Tj -*) /T.  denotes the proportion of observations in the _/th subsample.

4.3. A sy m p to tic  A n alysis

We first derive the moving average representation of the process, from which we can derive stochas­

tic properties of estimators and statistics.

For a p x r matrix a with full column rank, we define its orthogonal complement, denoted by 

oj.. as the p x  (p — r) m atrix with full column rank that has a\ a =  0.

Define f } =  ^j.i- The standard / ( l )  assumptions, sta ted  above, implies that a ' x f  j 3 J<J_

has full rank p — r , . and th a t the moving average representation for subsample j  is given by

t k -i
X t = Cj  ^ ■ 1 +  D J( I ) ;- I T C J ( X r , . I - £ ^ , * , . , - 0  t = +.1 ...........Tj.

1=1 1 = 1

where Cj =  3j  x (a'j a 'j.± an<̂  where D}(L)et is a  stationary process, (see P. R. Hansen

(2000b)). Let T,,. =  C j t j C j - i  ■ ■ • (T,,0 =  Cj).

In order to get the representation in the appropriate form we need to express all representations
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with initial values th a t are functions of {X(, t = 0. — 1 . . . .} ,  rather than ( X r , ......... X t ,-!c+ i).

j  — 1 m. This representation is given in the following theorem.

Theorem  4.3 .1  (T h e  G ranger representation  for ch an ge point processes). The moving 

average representation is given by

t J - l  Tj-,
Xt =  ?j,o  ^  ( c , - r  +  &Dt) +  6t +  Vj't .

t =  T j - ;-h l  1=1 l = T j - , - i  + l

where 6t is a deterministic variable satisfying 6t/ m axi<t<< D, =  0 (1 ) and V]t is a stationary 

process.

By Donsker's invariance principle we have that T ~ 1/2 where IV (u) is a drift-

less Brownian motion w ith piecewise constant covariance m atrix, given by Qj for u € [uj_ i . u_,). 

where Uj = T j /T .  In particular, for u G [uj_i.U j). we have that

r - 1/2 £  ^  i r (u )  _  ir(U j) 
l—Tj _ i +1

So if we define X i_ut  =  u £  ^ ) -  've have, in the case where <t>D£ -- 0,

T ~ i n X UuT -  (T j.o ( ir(u )  -  i r ( U>_ ,)) -  IT'(^x-i))- u € [ ti j- t.u ,) .
t= l

and in the case where <£Dt = < t < 7}). j  =  1 m r  1. we find

r - 1/2(Xltttr -  X j )  ~  TJto[(^(n) -  W ( u j ^ ) )  -  H  (VV(u) -  

where X j = T ~ 1 ^2tLTj-i+i Xt- The proportion of observations in the j t h  subsample, is given by
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P j  =  Uj  — U j - i ,  and it is convenient to define the rescaled Brownian motion

WO-(A) =  - J = ( ^ ( u )  -  W ( u j ) ) ,  A =
\fP] uj ~  uJ-l

where U j ( A )  is a Brownian motion on [0.1] that has constant covariance matrix Q.} . j  

m -f 1. We then have th a t

so that

T ~ l/2{Xi .uT ~ Xj )  -  yp-Tj .o[ 'Vj ( \ )  -  Wj\,

where I l j  =  / J  \Vj (X)du. and we have that

- r lT - 2 Y ,  (-Y l .1 -  X j K X u t  -  X j Y  ^  P j T j . 0  W - W j K W j - W j Y d u T ' j '
-  PjTj'OF jTj.o-

where Fj — / q j  ~  ) (IVj — \Vj)'du. With this result, it is now clear that

r - ‘5u  -

PiTuoF il'i.o

PJTJ.orJT 't0
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If we set

T,
?U) _S%  = ( T j - T j . l ) - 1 £  R * 1**’ a, 6 =  0,1

t—Tj~ i + l

we similarly find that

S $ { a j ) ±  ” Pj-Tj-,0 f \ w j  -  W j ) d W f a ) ± .
Jo

The likelihood function can be concentrated to a function that only depends on (3.

Leone. (0) oc |fi(/3)| = iSoo-Soiy9(/3,5 „ /3 ) - l^ 5 10|

lc, , \ ^ ( S u - S loS ^ lS o i m
~  15001 W s ^ \

\P'{Sn  -  S 10S0-0lS01)/3|
\& S n 0 \

OC

(see Johansen (1996)).

Define the concentrated likelihood function for subsample j ,  given by

J ( o(i) c(j) qU)~ i qU) \
=  -------------1 O' £>U) O ,------------\0j S $ 3 j \

and consider the pseudo likehhood function for the full sample

rn+l I qU) c(j )~ 1 cO) \ o i
f / h  i n ,  i ^j wn j io-^oo -̂ oi j j j i

' ■  ' - ’-n" , , . ^ 1

that weighs the individual likehhood functions by the proportion of observations in the corre­

sponding subsamples. This pseudo likelihood function corresponds to a change in ah parameters, 

and therefore ignores that some parameters may be constant across the subsamples in the true 

likelihood function.
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It is easily verified that

■ f -ccm c .  ( 3 )  =  Z ' C & I ; • - - • f i m - i - l  )  " F  ° p ( l ) ’

which makes it easy to derive the asymptotic distribution of a likelihood based test, because it 

simplifies to a  situation where the results from the standard model, without structural changes, 

can be used.

It is well known from the model w ithout structural changes, that the likelihood ratio  test for 

r = a against r = b (b > a) has the asymptotic distribution

Xdf{b -  a) =  tr  | £  dB F '  Q f  ‘ FF'^j £  FdB '

where B  is a (b -  a)-dimensional standard Brownian motion, and F  depends on the deterministic 

term of the process. If an unrestricted constant is included in the process we have F(u) = 

B(u) -  f 0l B(u)du.

We define

L R Tl / r  t „j t {x  i  i  )

as the likelihood ratio test of r , — a} against r} =  bj. where b j —aj — Xj. j  =  1......... m-i-1. Since H’,

is independent of Wj. for i j .  we have that in a situation where T i  Trn (or p l  Pm+ i) are

known, the asymptotic distribution is given by

m - f  1

j = i

which is a convex combination of (squared) Dickey-Fuller distributions.

This distribution is not easy to tabulate, because it depends on the values of p1 < p2 <  • • • <  pm
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as well as X; =  0  p  — 1. However, it might be well approximated by redistributions as is the

case for the Dickey-Fuller distribution, (see Nielsen (1997) and Doomik (1998)).

4 .3 .1 . T estin g  Schem e for Rank D eterm in ation

Let H (a l , . . . .  a m +l) denote the hypothesis that the cointegration rank in subsample j .  denoted by

r j . equals the integer a3 . for j  = I  m  + 1. and let H r be the hypothesis that the cointegration

rank is constant and equal to r  across the subsamples rq =  • • • =  r m+1 =  r. The rank can then

be determined by testing Hr against Hp for r  =  0 .1 ___ until the first acceptance. Let first

acceptance define r*. Because the test statistic diverges to oc if max r, > r. this procedure picks 

r* such that r* =  max r , . with probability converging to 1 — d. where a  is the size of the  test, and 

Hr- contains the  true model, with probability converging to one. Since r , may' be smaller than

r" for some j .  one can proceed by testing H {a .r"  r*) against Hr- for a = 0  r* — 1 until

first acceptance, and let this define r j .  Then test H { r \ .a .r " ........ r ’ ) against / f ( r j . r *  r*).

thereby defining . and so forth. The latter part of the testing procedure is arbitrary in the sense 

that one could have chosen another ordering of the j 's  rather than starting with

4 .3 .2 . U n know n C hange Points

In this subsection we give some ideas on how a test for the cointegration rank can be constructed, 

in the case where the change points are unknown. L'nless the change points are estim ated it is 

uninformative to know that the rank was first two. say, and then three. Nevertheless the outcome 

may be that the rank is constant, and then insight is gained.

The following two statistics might be used to determine the cointegration ranks in the regimes
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between the unknown change points:

Sup L R  =  sup L R Ul..... ,x m+1)
0<u,< — <um<l

Ave L R  — n 1 ^  L R Tl/ T.... r m/ r ( * i .........* m + i ) ,
0 < T i < T 2 <  - < T m < T

where n is the number of elements that the sum is taken over.

Provided that regularity conditions holds (such as the probability measure being tight), then 

the statistics' asymptotic distributions are given by

sup \ J 2 pJz j )  (4-3-2)0 < u , < . .  < i i m < l  \  J  J

and

f  f - f  dum. (4.3 .3)Jo J in y j =l I

where Z f  ~  Xdf(x j)-

The individual subsample statistics ( Z f  ^ m + i )  aie- f°r fixed p  = (px pm). mutually

independent. But for different segmentation of the unit interval, say p  — (px pm) and p  =

(P j Pm)-  •Zm+i) and (Z f  are dependent, because they are based on the

same underlying Brownian motion. For example.

( £  F?-'Fp-i )  J ^ p-

where Bp,j(A) =  p x 1/2 B ( X / p x). FPtJ(A) =  B pj ( A) — f Ql B Pfi (X)dX.  and Z f is based on B P-J(X) = 

P T 1/2B (  X/ px).

It might be the case that additional restrictions are needed in this setting. In the 1(0) frame­
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work, it is well known that the Sup-test diverges if the test statistics are not bounded away from 

the end points. For example Andrews (1993) showed that the Sup-LM test, for a single change, 

diverges if the supremum is taken over [0.1] rather than over [f. 1 — s] for some c > 0. This is due 

to the behavior of a Brownian motion near zero. A way to overcome th is  problem has been to 

exclude the first and last 15% of the tests, as proposed by Andrews (1993).

In our case with multiple changes one might expect that, in addition to  bounding the change 

points away from the endpoints, we also need to bound the change points apart from each other, 

which would be equivalent to requiring tha t min Pj > £ > 0-

However, the problem need not exist in this formulation. First of all. th is problem does not 

belong to the framework covered by Andrews (1993): we do not have a  tied  down Bessel process 

as our limit distribution. For a given value of p  we can make the transform ation from

However, a deeper analysis is needed to conclude whether Sup L R  diverges or not when pJ is not 

bounded away from zero.

The distributions, given in equations (4.3.1). (4.3.2), and (4.3.3), are non-standard and critical 

\-alues should be simulated in practical applications. In the case where the change point is known, 

it is impractical to tabulate critical values, because the critical values of ' Pj \df (x j)  depend on

the timing of the structural changes, (p l ......... Pm+i )• However, it might be possible to obtain simple

and practical formulae, from Monte Carlo studies of the response surface, o r related approaches 

to approximate asymptotic p-values. see for example B. E. Hansen (1997). We leave this and
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tabulation of the distribution given by equations (4.3.2) and (4.3.3) for future work.

A p p en d ix  D: P roofs

P r o o f  o f T h e o re m  4.3 .1 . Let for simplicity <f>Dt — 0. The result is obtained from the expression

i t - 1

1 = 1

=  Ci
T , - , fc-1

Cj -1 ^  =i + i(£)cr,_i + Cj~i(Xj-2 — rj_i-tvYj_2_,)
i = T , _ 2-t-l 

T . - l

1 = 1

k—l
~  f j . l  I C j - i  Y ,  £ j +  -I- C j - i ( X j -2  — r j - i ' j X j - 2- i )

\  i=T,.3 + l i = l

( Ti-fc+l fc-1
Cj - i  Y  +  D j - i i D s r . - t - k + i  +  C j - d X j - 2  -  Y  r j - i . i X j - 2 - ' )

t =T , - .  + 1 i = l

T, -x k - 1
=  ^  f j C j _ t Y  +  D j - i i D s r , . ,  +  t j C j - i ( X j - 2  ~ Y r J - ^ x J-2-i)

t= 7 'J —2-i-L i = l

T , ^ t  fc -I

=  C j t j C j - i  Y  Si + C j D j - d Q e T ^  - r C j t j C j - d X j - 2  ~ Y r i - ^ x j - ^ ) -
i=Tj-2 + 1 i = I

where D j_ 1(L)sT,_l is a stationary process. Altogether, we have the Granger representation

t - i
At =  Ci £i +  D \{L )e t +  Ci(.V0 — Ti.iA'o_,) t = 1 r t

1=1 : = i

T j - x
Xt = Cj Y  Si +  C j t j C j - i  Y  s l +  Dj ( L) S t - rCJD ] _ d L ) s Tl. l

i — 'P j _ i r l  i — 'T 'j - j -f-1
k-i

+ C j t j C j - i ( X o  -  Y  t = Ti +  1  T.
t = l
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and with the convention T — C j t jC j - i  ■ - ■ T j- i+ \C j- i  (T j ,o =  Cj), we obtain

X t = C j  £  + E  S i  +  V * '
t=rj_,+1 t=i i-f-i

where Vj is stationary. In the case where <f>£h /  0 for all t. we get

t j - i  T , - .

x t = Cj y ,  ( c _£++E E  (t_*+*Di)+dt +

where dt — B(L)& D t , B(L)  is a stationary polynomial, so th a t dt j  m axi< ,<( Dt = 0 (1 ). Note that 

we have the stationary cointegrating relations in the j t h  sub-sample given by 3': X t = 3 jD j(L )£ t . 

which does not involve elements from sub-samples prior to  the j t h  sub-sample. ■

R eferences

A n d r e w s . D. \V. K. (1993): "Test for Parameter Instability and Structural Change with Un­
known Change Point," Econometrica, 61, 821-856.

A n d r e w s . D. YV. K . ,  a n d  YV. P l o b e r g e r  (1994): "Optim al Tests YVhen a Nuisance Param eter 
is Present Only under the Alternative." Econometrica. 62, 1383-1414.

B a i . J. (1997): "Estim ating Multiple Breaks One at a  Time." Econometric Theory, 13. 315-352.

-----------  (1999): "Likelihood Ratio Test for Multiple S tructural Changes." Journal o f Economet­
rics. 91. 299-323.

B a i . J.. a n d  P. P e r r o n  (1998): "Estimating and Testing Linear Models with Multiple Structural 
Changes." Econometrica, 66, 47-78.

B o s w i j k . P. H. (1995): "Identifiability of Cointegrated Systems." Working paper. Tinbergen 
Institute.

Chow . G. C. (1960): "Tests of Equality Between Sets of Coefficients in Two Linear Regressions." 
Econometrica, 28, 591-605.

D o o r n i k . J . A. (1998): "Approximations to Teh Asymptotic Distribution of Cointegration Tsts." 
Journal o f Economic Surveys, 12. 573-593-

G r e g o r y . A. YV., a n d  B. E. H a n s e n  (1996): “Residual-Based Test for Cointegration in Models 
with Regime Shifts," Journal o f Econometrics. 70, 99-126.

H a n s e n . B. E. (1992a): "Test for Instability with / ( l )  Processes." Journal o f Business and 
Economic Statistics, 10, 321-335.

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



www.manaraa.com

123

-----------  (1992b): "Testing for Parameter Instability in Linear Models," Journal o f Policy Model­
ing, 14, 517-533.

-----------  (1997): "Approximate Asymptotic P  Values for Structural-Change Tests," Journal of
Business and Economic Statistics, 15. 60-67.

H a n s e n . H.. a n d  S. J o h a n s e n  (1999): "Some Tests for Parameter Constancy in Cointegrated 
VAR-Models," Econometrics Journal, 2. 306-333.

H a n s e n . P. R. (2000a): “Estimation of Cointegration Models with Heteroskedasticity and Au­
tocorrelation under Parameter Restrictions,” Forthcoming UCSD Department o f Economics 
Discussion Papers.

-----------  (2000b): “The Johansen-Granger Representation Theorem: An Explicit Expression for
/ ( l )  Processes,” Forthcoming UCSD Department o f Economics Discussion Papers.

-----------  (2000c): "Structural Changes in the Cointegrated Vector Autoregressive Model.” Forth­
coming UCSD Department o f Economics Discussion Papers.

INOL'E. A. (1999): "Test for Cointegrating Rank with a  Trend-Break." Journal o f Econometrics. 
90. 215-237.

•JOHANSEN. S. (1988): "Statistical Analysis of Cointegration Vectors,” Journal of Economic Dy­
namics and Control, 12, 231-254.

-----------  (1996): Likelihood Based Inference in Cointegrated Vector Autoregressive Models. Oxford
University Press. Oxford, 2nd edn.

J o h a n s e n . S.. a n d  K. J l s e l i l s  (1992): "Testing Structural Hypotheses in a Multivariate Coin­
tegration Analysis of the PPP  and the UIP for UK.” Journal of Econometrics. 53. 211-244.

X i e l s e n . B. (1997): "Bartlett Correction of the Unit Root Test in Autoregressive Models.” 
Biometrika. 84. 500-504.

X y b l o m . J . (1989): 'Testing for the Constancy of Param eters o%-er Time." Journal o f the Am er­
ican Statistical Association. 84, 223-230.

P e r r o n . P .  ( 1 9 9 0 ) :  "Testing for a Unit Root in a  Time Series with a  Changing Mean,” Journal 
of Business and Economic Statistics. 8, 153-162.

Q u a n d t . R. E. (I960): "Tests of the Hypothesis T hat a Linear Regrssion System Obeys Two 
Separate Regimes,” Journal o f the American Statistical Association. 55, 324-330.

Q u iN T O S . C . E. (1995): "Substainability of the Deficit Process with Structural Shifts.” Journal 
of Business and Economic Statistics. 13, 409-417.

-----------  (1997): "Stability Tests in Error Correction Models.” Journal of Econometrics. 82. 289-
3 1 5 .

S e o . B. (1998): "Tests for Structural Change in Cointegrated Systems." Econometric Theory. 14, 
222-259.

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



www.manaraa.com

Chapter 5

Estimation of Cointegration Models with Heteroskedasticity 

and Autocorrelation under Parameter Restrictions*

A bstract

This chapter derives a general estimation technique that is applicable to the coin­

tegrated vector autoregressive model under param eter restrictions. It allows for a 

general form of the covariance matrix and is well suited for estimation of models with 

heteroskedasticity and serial correlation.

Applicability includes: cointegrated VARA LA models, panel cointegration models, 

cointegration models with structural changes, and cointegration models under restric­

tions imposed by Granger non-causality.

M thank  Jan ie s  D. H a m il to n  for m an y  valuable com m ents .  All e rrors  rem ain  my responsibili ty.
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5.1. In trod u ction

Reduced rank regression (RRR) takes the form

Zot = A B 'Z  it + C  Z2t +  c£t t =  1  T.

where Zot , Z \t , and Z n  are vectors of dimension p. p i, and p-i respectively, and where .4. B , and 

C  are parameters of dimension p x  r. p i x r, and p x p j  respectively.

The estimation problem in the cointegrated vector autoregressive model (VAR), for a given 

cointegration rank, is a  reduced rank regression problem, and Johansen (1988) showed how pa­

ram eter estimates can be obtained in this case by solving an eigenvalue problem. This approach 

is similar to the methods by Ahn and Reinsel (1990) and the canonical correlations by Anderson 

(1951).

Johansen's technique is directly applicable to parameter estimation under restrictions that 

take the form .4 = G o  and B  =  H p  for known matrices G and H. while problems of the form

B — ( H  Hrp r). for known matrices H \  H r. can be solved by a switching algorithm of

Johansen and Juselius (1992), that reduces the estimation problem to a  simple RRR problem in 

every iteration.

Boswijk (1995) derived a  more general estimation technique that solves estim ation problems 

of the form vec(A) =  G o  +  g and vec(B)  =  H p  +  h, where vec(-) is the vectorization operator. G 

and H  are known matrices, and g and h are known vectors.

When {;£} is a sequence of i.i.d. Gaussian variables with mean zero and constant variance 

Q (a p x p matrix), the techniques yield maximum likelihood estimators when Z k  and Zot are 

measurable T t- \ .  where Tt =  cr(Zo,i-Zo ,2  Zo,t- Z i.o-^ .o)-

This chapter derives a  generalized reduced rank regression (GRRR) technique, that contains 

each of the above techniques as a special case. The technique is applicable to a  more general class 

of parameter restrictions, as well as more complex structures of the covariance m atrix, including
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heteroskedasticity and autocorrelation. The technique can be extended to non-linear restrictions by 

localized Unear approximation, and thereby include the class of param eter restrictions considered 

by Elliott (1997. 1998). However, the non-linear aspect is not treated in this paper. The technique 

by ElUott (1997. 1998) uses minimum distance methods apphed to the cointegrated regressions 

(see Engle and Granger (1987)), whereas the technique in this paper is motivated by likehhood 

analysis of the cointegrated VAR. In Section 5.3, we show how the GRRR technique is apphcable to 

several estimation problems. This chapter is only concerned with the estim ation problem, whereas 

(asymptotic) probabihstic properties of the estimators are ignored. In most cases, the probabilistic 

properties will depend on the problem at hand, and most results already exist in the literature.

5.2. G eneralized  R ed u ced  R an k  R egression

We define a generalized reduced rank regression, as the foUowing regression problem:

Z o t  A B ' Z i t  -f- C Z 2 t  -i~ ~t-  t =  1 T  (5.2.1)

s.t. vec(.4. C) = G v  + g. 

vec(B) -  -r h.

where G and H  are known matrices, g and h are known vectors, and where £ =  vec(i[ £7-) ~

.Y(0. E). The RRR is a special case of the GRRR. This can be seen by setting G =  / .  H  =  I. 

g =  0 . h =  0 . and E — I t  >'■ IT

Notice that (c£) need not be i.i.d. In fact the general structure of E allows for both het­

eroskedasticity and serial correlation.
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5.2.1. W hen th e  Covariance, E, is K nown

It is convenient to define

T

M hr  = T ~ l 5 3  [ .d 'E -'.d  x Z u Z[r] ■
* , T = l

T

=  r - 1 5 3  vec (Zit(Zo- -  c z 2ry z - l'A ) .

T

=  T ~ l 5 3
t , r = l

r
N e“'  =  r - 1 5 3  vec(E t- 1Z0T(Z;£S .Z ^ ) ) .

*,-r=i

where E ^ 1 is a p x p  block matrix of E " 1. such that the [i.jjth  element of E ^ 1 is the [(f — l)p-f-i. ( r —

1 )p — _/jth element of E _ l . i . j  = 1 p. (see Lemma E.7). The identities simplify considerably

in the situation where autocorrelation of {st } is excluded, a situation we treat separately below. 

We can now formulate the most general theorem.

T h eo rem  5.2 .1 . Let the parameter A. B . and C be restricted by- vec(.4.C) =  G v  - r  g and

vec(B) = H o + h and suppose that s =  vec(£-L -T) ~~ -V(0. E).

Then the parameter estimates o f  A. B . and C are derived by iterating on the equations

vec (A.C)  = G [G 'M g 'G ] - l  G' (N g°' -  M g 's )  -+- g. (5.2.2)

vec(B) = H  [ f //M *ac/ f ] -1 H' -  M *ac/i) + h. (5.2.3)

until convergence, from some initial \~alues (.TQ|. £?(0). C (01). The maximum value o f  the likelihood 

function is given by

Lmnx(A. B . C )  = ( 2 t ) ~ ^  |E |- i  exp .

B'ZUZ[TB B'Zu Z'2t 

Z2tZ\TB Z2tZ'2T
x E ~1
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where i  = vec(si, £7-). = Zot — A B 'Z U ~ CZot-

The equations (5.2.2) and (5.2.3) may seem complicated a t first. However, a closer look reveals 

the structure of a restricted GLS problem, which is indeed what the individual estimation problems 

reduce to.

Since the likelihood function is bounded by its maximum, then an algorithm based on these 

equations will eventually converge. It is not obvious that the likelihood function does not have local 

maxima, where the algorithm can get stuck. One can investigate the presence of local maxima, by 

starting the algorithm at different initial values. (A^°K B ^ K C ^ ) .  and verifying if the algorithm 

leads to the same value of the  likelihood function. No local maxima have been found in simulations 

using this approach, so it is possible th a t there is not a  problem with local maxima, and tha t the 

global maximum will always be found by iterations on the likelihood equations.

We now turn to some simpler situations. First the case where autocorrelation of { )  is ex­

cluded. but heteroskedasticity is not. In this case E is block diagonal, and we denote the T  diagonal

matrices by Q(t). t = 1 T.  We then have that E^.1 =  Q (t)~ l for t — t and 0 otherwise, and

we define

T
M he =

t =  1
T

N %  =  r - 1 £  vec ( Zn (Z0r -  C Z 2T) ' W r l A ) .
t = 1

T
r - l £

/ B'Zl tZ[tB B' ZUZ \
V 0 ( f ) - 1

t=l
\ Z2tZ'ltB Z~it Znt 1

r

N  £  =  r - i ^ v e c ( O (t ) - i z 0£(Z'u B . Z ' £) ) .
£ =  1

C o ro lla ry  5.2.2. Let the parameter be restricted as before: vec(.4. C) =  G c+ g. vec(B) = H o-rh  

and let 5  = vec(ci s t ) ~  Ar(0 .E ). where E is block diagonal, with diagonal block given by

fi(0-
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Then the parameter estimates o f  A. B . and C  are derived by iterating on the equations

vec (A. C) =  G [G 'M ^G ] " l G ' (N%‘ -  M  %‘g) + g. (5.2.4)

vec(B) =  H [ H ' M ^ H ] ' 1 H ' ( N f e  -  M k‘ h) + h. (5.2.5)

until convergence, from some initial values (.4(0). B (0). C (0)). The  maximum value o f  the  likelihood 

function is given by

L m a x { A . B . C )  =  ( 2 * ) - J*  •

where i t = Zot — .A B 'Z \t ~  CZ-it-

The result of Corollary’ 5.2.2. allows for heteroskedasticity of a known form, whereas the next 

corollary corresponds to the homoskedastic situation. Define

M *° =  [.4 'Q -i .4 . \ /„ ]  .

N*°c =  vec (A/io — Mo2 C')Sl~l A)  .

(  B ' M u B B'Mi2 ^
:■ o - 1

V  -u 2 i # \ [ 22 }

N hB° =  v e c (O -‘(.u 01S ..U 02)) . 

where M tJ = T ~ l Z llZ'j l . i . j  =  0.1.2.

C o ro lla ry  5 .2 .3 . Let the parameter be restricted as before: vec(.4. C ) =  G c-rg . vec(B ) = H o ~ h

and let s — vec(cL s t ) ~  -V(0. E). where E is block diagonal, with diagonal block given by Q.

i.e. T. =  IT f i -

Then the parameter estimates o f A. B. and C  are derived by iterating on the equations 

vec (A . C)  = G [G 'M hB°G ]~1G '( N hB° - M ,'B°g )+ g .
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vec(B)  = H [H"M%H] 1 H ' ( N %  -  M %h) +  k.

until convergence, from some initial \alues (.4(0). B (0KC^0)). The maximum value o f  the likelihood 

function is given by

where -  Zqi -  A B 'Z u  -  C Z u-

5 . 2 . 2 .  W h en  th e  C o v arian ce , E, is U nknow n

The estimation technique only requires a minor modification to the situation where the general 

covariance m atrix is unknown and must be estimated. The equations for vec(.4. C) and vec(B) 

remain unchanged but a  third equation, defining the likelihood equation for £ . is added. It is not 

possible to estimate an entirely unrestricted covariance matrix, since only one observation of £ =

vec(£t  £T ) is available. But semi-parametric heteroskedastic and autocorrelation consistent

(HAC) estimators are available. To fit this framework an estimator of £  must be a  maximum 

likelihood estimator. So we need to specify an estim ator £  that is the solution to the relevant 

likelihood equation. An obvious candidate is to estim ate an MA(q) process and let q increase with 

the sample size T . similar to the estimators suggested by N'ewev and West (1987) and Andrews 

(1991). see also Den Haan and Levin (1997).

T h e o re m  5.2 .4 . Let the  param eters .4. B. and C  be restricted by vec(.4.C) =  G v  + g and

vec(B)  =  H o - r h  and suppose that s =  vec(si - r )  ~  .V(0. E(0)).

Then the parameter estimates o f A. B. C. and 9 are derived by iterating on the equations

^maxT(A  B . C) = (2~)~p |fi| exp

vec(A .C ) = G [G ’M hBacG] 1 G  (N%ac -  M%' g)  +  g. 

vec (B) = H [ H ' M l? eH ] ~ l H , ('NlZ g - M ,? eh ) + h . (5.2.7)

(5.2.6)
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9 =  argm in£(.4 . B,  C. 9) (5.2.8)Q

until convergence. Grom some initial \-alues (.4(0). B (0). C {0). 0(O)). Set k =  vec(^i £r)- the

maximum value o f  the likelihood function is then given by

Lmax{A.B.C.9)  =  ( 2 t t ) - ^  |E ($ )r* e x p  ( - ^ r ' E ^ ) - 1̂  .

In the situation without autocorrelation but presence of heteroskedasticity. we also need to 

assume additional structure on £ . because we only have one (estimated) observation for each of the 

covariance matrices fl{t). A general formulation is to express the covariance by fia(£) =  / (8: X £_i) 

where 9 is a  parameter to be estimated, and X t~i  is a  set of variables that are 7-t- \ -measurable, 

where ,F"£_i is such that Z o i\^ t- i  ~  N { A B ' Z U +  C Z 2t . ftg(t)).

C o ro lla ry  5.2.5. Let the parameters .4. B. and C  be restricted by vec(A. C) = G o + g and 

vcc(B) =  H o  + h and suppose that (s£} is a sequence o f  independent variables with s£ ~

- V ( 0 . O f l ( f ) ) .

Then the parameter estimates of .4. B. C. and D  are derived by iterating on the equations

vec(.4 .C) = G [G 'M hB" G ] - l G '( N hBe t - \ l hBetg ) ~ g .  

vec(B) = H  [H’M ^ef H] ~ 1 H ‘’ ( N ^  -  h) +  h.

9 =  argmin L{A. B.  C.  9).Q

until convergence, from some initial values (.4(0). B (0). C (0). D (0)). where we set kt — Zot — A B 'Z u  — 

C Z2t and Cl(t) = f~lg(t) in the formulae for M g 1. Ngc!. . and N ^ .  The maximum \-alue of

the likelihood function is then given by

Lmax{ A . B . C . D )  = ( 2 - ) ~ ^  “ P ( " J
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An ARCH-type of Qg{t) is presented in Example 5.3.2. The estim ators in the homoskedastic 

case is given by the following theorem.

C o ro lla ry  5 .2 .6 . Let the parameters .4. B  and C  be restricted by  vec(.4.C) =  G o  -r g and 

vec( B )  — H o + h and suppose that {e£} is i.i.d. Gaussian. ~  -V(O.fi).

C o ro lla ry  5 .2 .7 . The parameter estimates o f  .4. B. C  and fi are found by iterating on the

equations

vec(.4. C) = G [G"M%G] ~ 1 G' (N^° -  M %°g) + g.

vec(B ) =  H  [ H ' M ^ H ]  ~ 1 H'  (N h4°c  -  M ^ h )  +  h.

fi =  7 ~ l (Zo -  A B ' Z X -  CZ2)(Z0 -  A B ' Z X -  C Z 2)'

until convergence, from some initial values (.4(0). B (0K C<0). f i(0*). The maximum value o f the 

likelihood function is given by

L max(A.B.C.Cl )  = ( 2 j r e r ^ | n r * .

If C  is unrestricted we define

M ^° =  [A 'f i- 'A  x S u ]  .

N*° =  vec(S iofi-1 .4).

M g  =  [B'Sn B: <I p I.

N%° =  v e c (S o if i-IS ) .

where S tJ = T ~ l JTtLi RitBj t -  Hit =  Zit — 4 /t24 / ^ 1Z2£. i . j  =  0.1. So the residuals. Rot and /?[£ 

are Zo£ and Z u  corrected for Z2£. and S tJ. i . j  — 0.1 are the moment matrices of these residuals. 

We then obtain the following result of Boswijk (1995).
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C o ro lla ry  5.2 .8 . Let A and B  be restricted by vec(.4) =  GC, 4- g and  vec(B) = H o  4- h. for 

known matrices G and H. and vectors g and h. and let E =  Ij- x Q be known. Then the parameter 

estimates o f Model (5.2.1) are derived by iterating on the equations

vec(A) 

vec (B)

n

G

H

G,M%°G

H ' M ^ H

G'  -  M ^ g )  +  g.

1 H ' -  M 4- h.

=  S q o -S o iB A ' +  A B 'S u B A ' -  A B 'S l0

until convergence, from some initial values (A. B. f>) =  (A0. B°. f2°). and then calculate

C =  M02M22 ~ AB’ M12 M22 ■

The maximum  value o f  the likelihood function is given by

L - V T ( A .  B.C.Cl) = (2—e)p |nj.

If g = 0 and h = 0 the equations for A and B  simplify to

vec(A) =  G [ G' ( B ' Sn B  :<■ /p)GJ~l G'vec (50i$ l_ l B) . 

vec(B) =  B [ B ,( A 'n - 1A > :5 n ) B ] " l l / ,v e c (S 1ofi“ l A ).

If A and C  are unrestricted we have the following result.

C o ro lla ry  5 .2.9. Let B  be restricted by  vec(B) =  H o  4- h. Then the parameter estimates are 

found by iterating on the equations

vec(B) = H \H ' ( A 'f T l A X S u )  H] 1 H ' [vec (S io fT ‘A) -  (A 'fi-1 A x S u ) h] 4 - h

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



www.manaraa.com

134

and

A{B)  = SqiB ( B ' S n B ) ~ l

6 (B ) = S o o - S olB ( B ' S u B ) ~ l B ’S W.

until convergence, from some initial values (.4. B. fi) =  (.4°. B °. fi°). and then calculate

C  = M 0 2 M22  ~ A B ' M l2^ 2 2 -

The maximum  value o f the likelihood function is given by

L - V T(A. B.C. P. )=(2-e )p \n\.

5.3. A pplicability: E xam p les

E x a m p le  5.3.1 (M oving  a v e ra g e  res id u a ls). In Theorem 5.2.4. we indicated that the G RRR  

technique is applicable to cointegrated VARA LA models. Since A. B . and C  are easily estimated 

for a fixed 1a lue o f L .  all we need to add is an additional equation for the estimator o fE.  Suppose

that (c t ) is a Gaussian moving average process o f order q. with  fi, =  cov(c(.; ,_ ,) . i = 1 q.

Then from fixed values o f  A. B . and C. that define the residuals, i i  £7-. one can estimate the
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general co\-ariance matrix

n 0 o o \

Qq ■ ■ ■ Qq 0

E =

0 fio O'
<7

0 Oo y

by maximizing the exact likelihood function. There does not exist a closed form solution to this 

problem, but numeric methods are available, see Osborn (1977) or Hamilton (1994). See Liitkepohl 

and Claessen (1997) for a different estimation method o f  cointegrated VARS I  A  processes.

E xam ple  5.3 .2  (A R C H  ty p e  h e te ro sk ed a s tic ity ) . Let fl(£)_I = Q'tD Q t. xvhereQ't = ( I . X t ). 

X t is a sequence o f p x q-dimensional exogenous \ariables. and D is a (j) -r q) x  (p + q) m atrix  o f 

parameters. The parameter estimate o f  D satisfies

T T

(5.3.1)

This can be verified from the first order conditions. Let .4. B . and C  be given, and define

( s i  s t ) accordingly. The log likelihood equation for D  is given by

and

l ( D ~ d ) = y tQ ’t(D  +  d)Qtet
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so the first order condition is given by

T

{ [ Q t (Q' t D Q t r l Q' t -  Q t i t i ' t Q i ]  d }  =  0
t=i

for all d. which proves Equation (5.3.1).

E x am p le  5.3 .3  ( S tr u c tu r a l  change). Consider the cointegrated Gaussian VAR with a struc­

tural change in the cointegration relations and coxariance matrix, as derived in Chapter 2. This 

can be expressed as

AA'( =  (a . a)
3, 0

0 32 X t - i l { t  >  T i )

+ r lAJTt_l +£t. t = l  T.

where s t ~~ i . i .d.X(O.Qi) for t < T \  and s t ~  i.i.d .Ar(0. Q j) for t > T\.

Then tins regression problem can be written
\  0 32 }

as a G RRR problem by  the definitions g = 0. h = 0. and

G =
0

0

where p denotes the number o f  rows in a  and 3. and r denotes the number o f columns in a. 3 l .
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and J 2- The covariance m atrix is given by

E -

and because the log-likelihood function, for given values o f  A. B . and C. splits into the sum

l(Qi.n-2) x  Tx loginjl +  tr

+ ( r - 7 i ) i o g |n 2| +  tr

the estimators are given by the sum o f squares

{ r

E
t= T i + 1

fi, =
t=  I

n 2 =  (T - T x) - X 2 2  i te[.
T

E
t= r1 + i

E x am p le  5 .3 .4  (G ra n g e r  n o n -cau sa lity ). Consider a cointegration model where ,Y2£ does not 

Granger cause X u . (see Mosconi and Giannini (1992)). In the VAR(2) model. A X t = n .V ,_i -r 

r  j AA'(_ i -r s c. for t = 1 T. the Granger non-causality is equi\-alent to the restrictions

n  =

r  i  =

n u n 1 2

Op., xp, n 2 2

n . n r  m 2

Op, xp, r  i,22

o f X\ t- P2 = f

a  12 j (  3'i\ ^

0P, x ri 022 J y Or, xp, 3.22 J

where p x is the dimension o f  A 'u. P2 = P — Pi is the dimension o f X^t- r 2 is the rank o f  1122- and
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r i = r — r-j. These restrictions can be expressed by

(  (
I ri x

\

0

0

0

0 /Pl x
‘pi

Op,

0 

0

[ p - ± p  }

H  =

0

0 Ir . X1
0pi

\ J  )

When £t ~  i .i.d .N (0. Q) the covariance matrix is given by S  =  / r  x  ft.

E x am p le  5.3.5 (P a n e l c o in te g ra tio n ) . The panel cointegration model o f Larsson. Lyhagen, 

and Lothgren (1998). Larsson and Lyhagen (1999). and Groen and Kleibergen (1999). takes the 

form

< A * , ,  '

= a(3'

 ̂ J

where ct has one o f  three structures

f

Q =

( \ ( \ 
- I t

\  ~nt J

«1 0 0

0 0

0 0

Ct =  In X Ct .

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited w ithout perm iss ion .



www.manaraa.com

139

or a. is unrestricted, where (3 has the structure

0 =

3 : 0 0

0 0 

0 0 3

or 0  = In x  3.

where T i has the structure

Ti =

n /

1  rM o o N

o o

o o r I>n y

r, =/„ »r,.

or r i  is unrestricted, and where S  =  I f  :< Q. The covariance matrix. f>. can either be block 

diagonal

n  =

(

\

fii

0

0 \

or be unrestricted.

Similar to the examples above, these (sets of) restrictions can be expressed in terms o f  G and 

H matrices.

E xam ple  5 .3 .6  (S e c to r  c o in te g ra tio n ) . Sector cointegration is similar to panel cointegration. 

The parameters have a block-diagonal structure except for one set o f rows that corresponds to a 

common set o f  \ariables. A'ot. This can be expressed as

(  v v . \  AAo t

A I i t

y A Ant j

(  X ^

A 'i.t-i

V I

(
A A o.t-,

A A ^ t.!

\  I \ = 01

^  A A n , i - l  y V Snt /
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where a  may have the structure:

( aoi ••• Qon

a i  0 0

0 •• 0

0 0 a n

or

and 0  m ay have the structure

(

0 =

or

ct =
( < * 0 1 .............< * 0 n )

I n  X  Q:

a  =
(1.........1) X a 0

I n  - <1

^01 ^0n

3x 0 0

0 0

0 0 3 n

0  =
(*^01 ^On)

I n  X 3  )

n /

0 =

( 1  1) X 3 Q

I n  X. J

and a similar structure for IV

A p p en d ix  E: P roofs

For notational convenience, define

Z 1B2 =  U Z [ B . Z i ) x I p)). 

Zi a = {Z[ x A) KPl<r.
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where A'Pl,r is the commutation matrix, uniquely defined by the A'Pl>rvec(i?) =  vec(B') for any 

Pi x r m atrix B.

Let £  be the covariance m atrix of c =  vec(ci , £7 ). In practice, it can be burdensome to

work directly with the Tp x T p  m atrix £  in equations (5.2.2) and (5.2.3). The following lemma is 

therefore useful.

L em m a E .7 . Let £^. be the p x p sub-matrix o f £ -1 . such that the ( i . j ) t h  element ofY.  

the (p(t — 1 ) + i.p{~ — 1 ) + j ) t h  element o f  E _ I .

Then

- 1 is

T ' l Z \ A T T l Z l A =  =  r - 1 [A'Z~l A x  Z u Z { T] . (E.2)
t . T =  I

T

N -ic =  T ~ l 5 3  vec ( Zu (Zor -  C Z2^),£ f- 1,̂ )  • (E.3)
( . r = l

t . r =  I

r

(  B ' Z ltZ[TB  B ' Z u Z^

T ^ Z ^ E - 'v e c f Z o  -  CZ2) =

r  1Z/1B2£-1Zib2 = Mflc = r_I 53

T _ lZ'1B2E _lvec (Z0)

I f  £  is block diagonal, with T  blocks o f size p x p given by f l( t) . f =  1  T. then

T
=  r - i  j -  [ ^ ( t J - U  x Z UZ'U] .

X- E ,-1
y Z2 tZ{r i? ZotZ^T

N H « c  =  T - l  5 3  v e c  ( E - I Z o r ( Z J t B >  Z ' f ) )  .

E-4)

(E.5)
t , T =  1

r - ' z ' 1A£ - l z lA

r - ' Z '  4 £ - Ivec(Z0  -  CZ2) =  N*4Cc  =  T ' 1 5 3 vec (Z I((Z0t -  C Z 2 r ) 'n ( f ) - ‘.4 ) .
(=1

T

r - lz '1B2£ - l z ie2 =  M ^  =  r - ‘ 5 3

r
r - 1Z'1B2 £ - 1vec(Zo) =  N l ^ r ^ w ^ r ^ o i t Z j i f l . Z a ) ) .

/ B 'Z u Z'ltB B ' Z u Z ' 2 t  N
x f l ( t ) - 1

V Z2tZ[tB ZotZot )I

* =  1
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I f  {=t} is i.i.d. Gaussian with co\-ariance matrix Q. the expressions sim plify to:

r - ' z ' u r ' Z M  = 

r - 1 Z j  4S _  1 v ec (Z o  -  C Z 2 ) =

T - 1 Z[B2£ - lZ lB2

r - l Z'1B2E - lvec(Z0) =

M^° =  [ .4 '0 - ‘.4 x  .Uu ] .

N f e  =  v e c  ( A / io  -  A / o a C ' j n - U )  . 

B' Mn B B' M i2 

M2lB M22

N^° = v e c ( n - l (.U0i B. Moi ) ) .

M b = X Q '

P roo f. The identity

Z ' l A E ~ l Z l A  =  K 'p i  r ( Z i  x  .4 ' ) £ - l (ZJ x  .4 )A'P l ,r

— ^ r.pi ^ K (Zi« x  j4 ) E j ( Z lr x .4 )A pl>r
f , T = l

r
-  K r,Pl (Z U A ' E ^ ) ( Z ' lr X A ) K pi_r

t ,T=  1

T

= K r.Pl (Z ltZ'w  A 'E ^ A ) Ap:.r
f , r = I

T

= 22 (A'ZrMxZltZ'lr).
t ,T=  I

proves (E.2) and

Z '^ I T lvec(Z0 -  C Z2) =  A'r,pi 5 3  (Z u x  .4 ')E ^vec(Z o- -  CZ2t)
/ . r = l

T

= K r.Pl (Zu * A 'E -l)v e c (Z 0r -  C Z 2t)
t,T=  I

r
-  AVp, 5 3  vec(.4'££~P (Zor -  C Z 2r) Z[t )

t ,T~  I

r
-  5 3  vec (Z„(Zor -  C Z2t),E (- i'-4) .

C , r = l
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proves (E.3). Equations (E.4) and  (E.5) are proven similarly. The last eight identities follow by 

setting Ej~,l =  Q(t)~l or EJ"  ̂ -  Cl~ 1 for t =  r  and zero otherwise. H

P r o o f  o f  Theorem  5 .2 .1 . Applying the vec operation to equation (5.2.1) yields the equation

vec(Zo) =  ( Z[ B  x, /p)vec(.4) {Z'2 X / p)vec(C) +  s

=  [{Z[B.  Z£) X /p)] vec(A. C) -f- s 

=  Z i B 2 ( G v - i - g )  - r  S .

which may be rewritten as

vec(Zo) — %IB29 = ’Z‘iB2 Gu? +  £.

Then for fixed \~alues of B  and E this is a restricted GLS problem with the well know solution 

given in equation (5.2.2). using Equations E.4 and E.5.

Similarly, for fixed .4. C. and E. we have the equation

vec(Z0 -  C Z 2) = vec(.4B,Z I) +  £

=  (Z{ > :.4 )v ec (in + c - 

=  (Z[ X -4)A'Pl,rvec(B) -i- £

1 Z i . 4 V e c ( S )  +  £  =  Z i _ 4 ( / f o  +  / l )  4-  £ .

which we rewrite as

vec(Zo — CZ 2 ) — Zi Ah = +  £.

This is also a restricted GLS problem, with the solution given in equation (5.2.3). using Equations 

E.2 and E.3. ■

P r o o f o f  Corollaries 5 .2 .2  and 5 .2 .3 . Follows from Theorem 5.2.1 and Lemma E.7. ■

The remaining corollaries were proven in Appendix B of Chapter 2.
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